• 제목/요약/키워드: cosmic-rays

검색결과 126건 처리시간 0.023초

TRACING BRIGHT AND DARK SIDES OF THE UNIVERSE WITH X-RAY OBSERVATIONS

  • SUTO YASUSHI;YOSHIKAWA KOHJI;DOLAG KLAUS;SASAKI SHIN;YAMASAKI NORIKO Y.;OHASHI TAKAYA;MITSUDA KAZUHISA;TAWARA YUZURU;FUJIMOTO RYUICHI;FURUSHO TAE;FURUZAWA AKIHIRO;ISHIDA MANABU;ISHISAKI YOSHITAKA
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.387-392
    • /
    • 2004
  • X-ray observations of galaxy clusters have played an important role in cosmology, especially in determining the cosmological density parameter and the fluctuation amplitude. While they represent the bright side of the universe together with the other probes including the cosmic microwave background and the Type Ia supernovae, the resulting information clearly indicates that the universe is dominated by dark components. Even most of cosmic baryons turns out to be dark. In order to elucidate the nature of dark baryons, we propose a dedicated soft-X-ray mission, DIOS (Diffuse Intergalactic Oxygen Surveyor). Recent numerical simulations suggest that approximately 30 to 50 percent of total baryons at z = 0 take the form of the warm-hot intergalactic medium (WHIM) with $10^5K < T < 10^7K $which has evaded the direct detection so far. The unprecedented energy resolution (${\~} 2eV$) of the XSA (X-ray Spectrometer Array) on-board DIGS enables us to identify WHIM with gas temperature $T = 10^6 {\~} 10^7K$ and overdensity $\delta$ = 10 ${\~}$ 100 located at z < 0.3 through emission lines of OVII and OVIII. In addition, WHIMs surrounding nearby clusters are detectable with a typical exposure time of a day, and thus constitute realistic and promising targets for DIOS.

RADIO EMISSION FROM WEAK SPHERICAL SHOCKS IN THE OUTSKIRTS OF GALAXY CLUSTERS

  • Kang, Hyesung
    • 천문학회지
    • /
    • 제48권2호
    • /
    • pp.155-164
    • /
    • 2015
  • In Kang (2015) we calculated the acceleration of cosmic-ray electrons at weak spherical shocks that are expected to form in the cluster outskirts, and estimated the diffuse synchrotron radiation emitted by those electrons. There we demonstrated that, at decelerating spherical shocks, the volume integrated spectra of both electrons and radiation deviate significantly from the test-particle power-laws predicted for constant planar shocks, because the shock compression ratio and the flux of inject electrons decrease in time. In this study, we consider spherical blast waves propagating through a constant density core surrounded by an isothermal halo with ρ ∝ r−n in order to explore how the deceleration of the shock affects the radio emission from accelerated electrons. The surface brightness profile and the volumeintegrated radio spectrum of the model shocks are calculated by assuming a ribbon-like shock surface on a spherical shell and the associated downstream region of relativistic electrons. If the postshock magnetic field strength is about 0.7 or 7 µG, at the shock age of ∼ 50 Myr, the volume-integrated radio spectrum steepens gradually with the spectral index from αinj to αinj + 0.5 over 0.1–10 GHz, where αinj is the injection index at the shock position expected from the diffusive shock acceleration theory. Such gradual steepening could explain the curved radio spectrum of the radio relic in cluster A2266, which was interpreted as a broken power-law by Trasatti et al. (2015), if the relic shock is young enough so that the break frequency is around 1 GHz.

Development of Anticosmic Shielded Ultra Low Background Gamma Spectrometer for Precise Measurement of Environmental Radioactivity

  • Byun, Jong-In;Park, Yun-Ho;Kwak, Seung-Im;Hwang, Han-Yull;Chung, Kun-Ho;Park, Gun-Sik;Park, Doo-Won;Lee, Chnag-Woo
    • Nuclear Engineering and Technology
    • /
    • 제34권6호
    • /
    • pp.545-552
    • /
    • 2002
  • We developed an ultra low background gamma ray spectrometer particularly suitable for experiment which require lower detection limit. The background of a germanium spectrometer is suppressed by applying active and passive shielding technique at the same time. The active shielding devices consist of plastic scintillating plates of 50 mm thick and anti-coincidence electronic system. The shielding is made of 150 mm thick walls of very low activity lead,20 mm with activity of <10 Bq/kg and 130 mm with activity of <50 Bq/kg. The observed background count rates are 1.2 $s^{-1}$ and 0.36 $s^{-1}$ without and with the active shielding, respectively, overall the energy regions from 30 keV to 3 MeV The cosmic ray induced background is suppressed by a rate of 0.8 $s^{-1}$ at the present work. The detection efficiency curve necessary to obtain the radioactivity of environmental samples has been precisely determined on the energy regions from 80 to 2000 keV with a 10$^3$ ml marinelli beaker sample, consisting of the calibrated radionuclides $^{109}$ Cd, $^{57}$ CO, $^{139}$ Ce, $^{203}$ Hg, $^{113}$ Sn, $^{85}$Sr, $^{137}$ Cs, $^{60}$ Co and $^{88}$ Y. Virtues Of the method are demonstrated by measuring the activity of $^{137}$ Cs contained in the powdered milk.

우주선 세기 일변화 최대 및 최소 지방시 (LOCAL TIMES OF GALACTIC COSMIC RAY INTENSITY MAXIMUM AND MINIMUM IN THE DIURNAL VARIATION)

  • 오수연;이유
    • Journal of Astronomy and Space Sciences
    • /
    • 제23권2호
    • /
    • pp.117-126
    • /
    • 2006
  • 지상에서 우주선 측정기(NM, Neutron Monitor)로 관측되는 우주선 세기의 일변화는 일평균 값의 $1{\sim}2%$ 정도의 진폭을 갖는 사인곡선의 형태를 보인다. 본 연구는 NM 관측소에서 우주선 일변화의 최대 및 최소 세기가 관측되는 지방시 변화의 통계적 경향 분석을 수행하였다. 우주선 일변화 최대 및 최소 세기 시각의 분포에 영향을 주는 우주선 중성자 관측소의 위치(cut-off rigidity)와 태양활동도의 영향을 분석해 보기 위해서 저위도 지방의 Haleakala(위도: 20.72N, cut-off rigidity: 12.91Gev)와 고위도 지방의 Oulu(위도: 65.05N, cut-off rigidity: 0.81Gev) 우주선 중성자 관측소의 1996년(태양활동 극소기) 및 2000년(태양활동 극대기) 우주선 관측 자료를 분석하였다. 태양활동 극대기의 우주선 일변화 최대 및 최소 세기 시각은 태양활동 극소기에 비해 약 $2{\sim}3$시간 정도 늦은 시각에 나타난다. 우주선 중성자 관측소의 위치 즉 위도별 분포(rigidity의 크기)에 따른 영향을 살펴보면, cut-off. rigidity가 Haleakala보다 작은 Oulu에서 우주선 일변화 최대 및 최소 세기 시각이 약 $2{\sim}3$시간 정도 늦게 나타나며, 이러한 현상은 극대기에 더욱 뚜렷하게 나타났다. 태양활동에 따른 행성간 자기장 세기의 변화와 위도에 따른 cut-off rigidity의 크기에 따라 우주선 세기 일변화 위상이 결정된다고 볼 수 있다.

GLOBAL MONITORING OF PLANKTON BLOOMS USING MERIS MCI

  • Gower, Jim;King, Stephanie;Goncalves, Pedro
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.441-444
    • /
    • 2006
  • The MERIS MCI (Maximum Chlorophyll Index), measuring the radiance peak at 709 nm in water-leaving radiance, indicates the presence of a high surface concentration of chlorophyll ${\underline{a}}$ against a scattering background. The index is high in 'red tide' conditions (intense, visible, surface, plankton blooms), and is also raised when aquatic vegetation is present. A bloom search based on MCI has resulted in detection of a variety of events in Canadian, Antarctic and other waters round the world, as well as detection of extensive areas of pelagic vegetation (Sargassum spp.), previously unreported in the scientific literature. Since June 1 2006, global MCI composite images, at a spatial resolution of 5 km, are being produced daily from all MERIS (daylight) passes of Reduced Resolution (RR) data. The global composites significantly increase the area now being searched for events, though the reduced spatial resolution may cause smaller events to be missed. This paper describes the composites and gives examples of plankton bloom events that they have detected. It also shows how the composites show the effect of the South Atlantic Anomaly, where cosmic rays affect the MERIS instrument.

  • PDF

SEMI-ANALYTIC MODELS FOR ELECTRON ACCELERATION IN WEAK ICM SHOCKS

  • Kang, Hyesung
    • 천문학회지
    • /
    • 제53권3호
    • /
    • pp.59-67
    • /
    • 2020
  • We propose semi-analytic models for the electron momentum distribution in weak shocks that accounts for both in situ acceleration and re-acceleration through diffusive shock acceleration (DSA). In the former case, a small fraction of incoming electrons is assumed to be reflected at the shock ramp and pre-accelerated to the so-called injection momentum, pinj, above which particles can diffuse across the shock transition and participate in the DSA process. This leads to the DSA power-law distribution extending from the smallest momentum of reflected electrons, pref, all the way to the cutoff momentum, peq, constrained by radiative cooling. In the latter case, fossil electrons, specified by a power-law spectrum with a cutoff, are assumed to be re-accelerated from pref up to peq via DSA. We show that, in the in situ acceleration model, the amplitude of radio synchrotron emission depends strongly on the shock Mach number, whereas it varies rather weakly in the re-acceleration model. Considering the rather turbulent nature of shocks in the intracluster medium, such extreme dependence for the in situ acceleration might not be compatible with the relatively smooth surface brightness of observed radio relics.

RE-ACCELERATION MODEL FOR THE 'SAUSAGE' RADIO RELIC

  • KANG, HYESUNG
    • 천문학회지
    • /
    • 제49권4호
    • /
    • pp.145-155
    • /
    • 2016
  • The Sausage radio relic is the arc-like radio structure in the cluster CIZA J2242.8+5301, whose observed properties can be best understood by synchrotron emission from relativistic electrons accelerated at a merger-driven shock. However, there remain a few puzzles that cannot be explained by the shock acceleration model with only in-situ injection. In particular, the Mach number inferred from the observed radio spectral index, Mradio ≈ 4.6, while the Mach number estimated from X-ray observations, MX−ray ≈ 2.7. In an attempt to resolve such a discrepancy, here we consider the re-acceleration model in which a shock of Ms ≈ 3 sweeps through the intracluster gas with a pre-existing population of relativistic electrons. We find that observed brightness profiles at multi frequencies provide strong constraints on the spectral shape of pre-existing electrons. The models with a power-law momentum spectrum with the slope, s ≈ 4.1, and the cutoff Lorentz factor, γe,c ≈ 3−5×104, can reproduce reasonably well the observed spatial profiles of radio fluxes and integrated radio spectrum of the Sausage relic. The possible origins of such relativistic electrons in the intracluster medium remain to be investigated further.

Updated Comparison Study of Extensive Air Shower Simulations with COSMOS and CORSIKA

  • 김지희;노순영;류동수
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.128.2-128.2
    • /
    • 2011
  • Experiments to study high-energy cosmic rays (CRs) employ Monte Carlo codes for extensive air shower (EAS) simulations to figure out the properties of CRs. COSMOS and CORSIKA among EAS simulation codes are currently being used to analyze the data of the Telescope Array experiment. We have generated a library of about 10,000 simulated EASs with the primary energy ranging from $10^{18.5}eV$ to $10^{20}eV$ and the zenith angle of primary particles ranging from 0 to 45 degree for proton and iron primaries. We have compared the results predicted by CORSIKA and COSMOS under the same condition. In this talk, we show the differences in the energy spectra at the ground, the longitudinal shower profile as a function of atmospheric depth, the Calorimetric energy, and the Xmax distribution. We also discuss the lateral distribution function obtained from GEANT4 simulations which is being used to measure the detector response.

  • PDF

MASSIVE BLACK HOLE EVOLUTION IN RADIO-LOUD ACTIVE GALACTIC NUCLEI

  • FLETCHER ANDRE B.
    • 천문학회지
    • /
    • 제36권3호
    • /
    • pp.177-187
    • /
    • 2003
  • Active galactic nuclei (AGNs) are distant, powerful sources of radiation over the entire electromagnetic spectrum, from radio waves to gamma-rays. There is much evidence that they are driven by gravitational accretion of stars, dust, and gas, onto central massive black holes (MBHs) imprisoning anywhere from $\~$1 to $\~$10,000 million solar masses; such objects may naturally form in the centers of galaxies during their normal dynamical evolution. A small fraction of AGNs, of the radio-loud type (RLAGNs), are somehow able to generate powerful synchrotron-emitting structures (cores, jets, lobes) with sizes ranging from pc to Mpc. A brief summary of AGN observations and theories is given, with an emphasis on RLAGNs. Preliminary results from the imaging of 10000 extragalactic radio sources observed in the MITVLA snapshot survey, and from a new analytic theory of the time-variable power output from Kerr black hole magnetospheres, are presented. To better understand the complex physical processes within the central engines of AGNs, it is important to confront the observations with theories, from the viewpoint of analyzing the time-variable behaviours of AGNs - which have been recorded over both 'short' human ($10^0-10^9\;s$) and 'long' cosmic ($10^{13} - 10^{17}\;s$) timescales. Some key ingredients of a basic mathematical formalism are outlined, which may help in building detailed Monte-Carlo models of evolving AGN populations; such numerical calculations should be potentially important tools for useful interpretation of the large amounts of statistical data now publicly available for both AGNs and RLAGNs.

RE-ACCELERATION OF FOSSIL ELECTRONS BY SHOCKS ENCOUNTERING HOT BUBBLES IN THE OUTSKIRTS OF GALAXY CLUSTERS

  • Kang, Hyesung
    • 천문학회지
    • /
    • 제51권6호
    • /
    • pp.185-195
    • /
    • 2018
  • Galaxy clusters are known to host many active galaxies (AGNs) with radio jets, which could expand to form radio bubbles with relativistic electrons in the intracluster medium (ICM). It has been suggested that fossil relativistic electrons contained in remnant bubbles from extinct radio galaxies can be re-accelerated to radio-emitting energies by merger-driven shocks via diffusive shock acceleration (DSA), leading to the birth of radio relics detected in clusters. In this study we assume that such bubble consist primarily of thermal gas entrained from the surrounding medium and dynamically-insignificant amounts of relativistic electrons. We also consider several realistic models for magnetic fields in the cluster outskirts, including the ICM field that scales with the gas density as $B_{ICM}{\infty}n^{0.5}_{ICM}$. Then we perform time-dependent DSA simulations of a spherical shock that runs into a lower-density but higher-temperature bubble with the ratio $n_b/n_{ICM}{\approx}T_{ICM}/T_b{\approx}0.5$. We find that inside the bubble the shock speed increases by about 20 %, but the Mach number decreases by about 15% in the case under consideration. In this re-acceleration model, the observed properties of a radio relic such as radio flux, spectral index, and integrated spectrum would be governed mainly by the presence of seed relativistic electrons and the magnetic field profile as well as shock dynamics. Thus it is crucial to understand how fossil electrons are deposited by AGNs in the ICM and how the downstream magnetic field evolves behind the shock in detailed modeling of radio relics.