Browse > Article
http://dx.doi.org/10.5303/JKAS.2020.53.3.59

SEMI-ANALYTIC MODELS FOR ELECTRON ACCELERATION IN WEAK ICM SHOCKS  

Kang, Hyesung (Department of Earth Sciences, Pusan National University)
Publication Information
Journal of The Korean Astronomical Society / v.53, no.3, 2020 , pp. 59-67 More about this Journal
Abstract
We propose semi-analytic models for the electron momentum distribution in weak shocks that accounts for both in situ acceleration and re-acceleration through diffusive shock acceleration (DSA). In the former case, a small fraction of incoming electrons is assumed to be reflected at the shock ramp and pre-accelerated to the so-called injection momentum, pinj, above which particles can diffuse across the shock transition and participate in the DSA process. This leads to the DSA power-law distribution extending from the smallest momentum of reflected electrons, pref, all the way to the cutoff momentum, peq, constrained by radiative cooling. In the latter case, fossil electrons, specified by a power-law spectrum with a cutoff, are assumed to be re-accelerated from pref up to peq via DSA. We show that, in the in situ acceleration model, the amplitude of radio synchrotron emission depends strongly on the shock Mach number, whereas it varies rather weakly in the re-acceleration model. Considering the rather turbulent nature of shocks in the intracluster medium, such extreme dependence for the in situ acceleration might not be compatible with the relatively smooth surface brightness of observed radio relics.
Keywords
acceleration of particles; cosmic rays; galaxies: clusters: general; shock waves;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Akamatsu, H. & Kawahara, H. 2013, Systematic X-Ray Analysis of Radio Relic Clusters with Suzaku, PASJ, 65, 16   DOI
2 Amano, T. & Hoshino, M. 2009, Electron Shock Surfing Acceleration in Multidimensions: Two-Dimensional Particlein-Cell Simulation of Collisionless Perpendicular Shock, ApJ, 690, 244   DOI
3 Balogh, A. & Truemann, R. A., 2013, Physics of Collisionless Shocks: Space Plasma Shock Waves, ISSI Scientific Report 12 (New York: Springer)
4 Bell, A. R. 1978, The Acceleration of Cosmic Rays in Shock Fronts - I, MNRAS, 182, 147   DOI
5 Brunetti, G., & Jones, T. W. 2014, Cosmic Rays in Galaxy Clusters and Their Nonthermal Emission, Int. J. Mod. Phys. D, 23, 30007
6 Burgess, D. 2007, Particle Acceleration at the Earth's Bow Shock, Lect. Notes Phys., 725. 161
7 Caprioli, D., & Sptikovsky, A. 2014, Simulations of Ion Acceleration at Non-relativistic Shocks. I. Acceleration Efficiency, ApJ, 783, 91   DOI
8 Caprioli, D., Pop, A. R., & Sptikovsky, A. 2015, Simulations and Theory of Ion Injection at Non-relativistic Collisionless Shocks, ApJ, 798, 28
9 Drury, L. O'C. 1983, An Introduction to the Theory of Diffusive Shock Acceleration of Energetic Particles in Tenuous Plasmas, Rep. Prog. Phys., 46, 973   DOI
10 Feretti, L., Giovannini, G., Govoni, F., & Murgia, M. 2012, Clusters of Galaxies: Observational Properties of the Diffuse Radio Emission, A&A Rev., 20, 54   DOI
11 Gosling, J. T., Thomsen, M. F., & Bame, S. J. 1989, Suprathermal electrons at Earth's bow shock, JGR, 94, 10011   DOI
12 Guo, X., Sironi, L., & Narayan, R. 2014, Non-thermal Electron Acceleration in Low Mach Number Collisionless Shocks. I. Particle Energy Spectra and Acceleration Mechanism, ApJ, 793, 153
13 Ha, J.-H., Ryu, D., Kang, H., & van Marle, A. J. 2018, Proton Acceleration in Weak Quasi-parallel Intracluster Shocks: Injection and Early Acceleration, ApJ, 864, 105   DOI
14 Hoang, D. N., Shimwell, T. W., Stroe, A. et al. 2017, Deep LOFAR Observations of the Merging Galaxy Cluster CIZA J2242.8+5301, MNRAS, 471, 1107   DOI
15 Kang, H. 2011, Energy Spectrum of Nonthermal Electrons Accelerated at a Plane Shock, JKAS, 44, 49
16 Kang, H. 2016, Re-acceleration Model for the Toothbrush Radio Relic, JKAS, 49, 83
17 Kang, H., Jones, T. W., & Gieseler, U. D. J. 2002, Numerical Studies of Cosmic-Ray Injection and Acceleration, ApJ, 579, 337   DOI
18 Kang, H. & Ryu, D. 2011, Re-acceleration of Non-thermal Particles at Weak Cosmological Shock Waves, ApJ, 734, 18   DOI
19 Kang, H., Ryu, D., & Jones, T. W. 2012, Diffusive Shock Acceleration Simulations of Radio Relics, ApJ, 756, 97   DOI
20 Kang, H., Ryu, D., & Jones, T. W. 2017, Shock Acceleration Model for the Toothbrush Radio Relic, ApJ, 840, 42   DOI
21 Malkov, M. A. & Drury, L.O'C. 2001, Nonlinear Theory of Diffusive Acceleration of Particles by Shock Waves, Rep. Progr. Phys., 64, 429   DOI
22 Kang, H., Ryu, D., & Ha, J.-H. 2019, Electron Preacceleration in Weak Quasi-perpendicular Shocks in Highbeta Intracluster Medium ApJ, 876, 79   DOI
23 Levinson, A., 1992, Electron Injection in Collisionless Shocks, ApJ, 401, 73   DOI
24 Levinson, A., 1996, On the Injection of Electrons in Oblique Shocks, MNRAS, 278, 1018   DOI
25 Marcowith, A., Bret, A., Bykov, A., et al. 2016, The Microphysics of Collisionless Shock Waves, RPPh, 79, 046901
26 Matsukiyo, S. & Matsumoto, Y. 2015, Electron Acceleration at a High Beta and Low Mach Number Rippled Shock J. Phys. Conf. Ser., 642, 012017   DOI
27 Kobzar, O., Niemiec, J., Amano, T., et al. 2019, Electron Acceleration at Rippled Low Mach Number Shocks in Merging Galaxy Clusters, Proc. 36th Int. Cosmic Ray Conf. (ICRC2019), 368
28 Park, J., Caprioli, D., & Spitkovsky, A. 2015, Simultaneous Acceleration of Protons and Electrons at Nonrelativistic Quasiparallel Collisionless Shocks, PRL, 114, 085003   DOI
29 Riquelme, M. A. & Spitkovsky, A. 2011, Electron Injection by Whistler Waves in Non-relativistic Shocks, ApJ, 733, 63   DOI
30 Roh, S., Ryu, D., Kang, H., Ha, S., & Jang, H. 2019, Turbulence Dynamo in the Stratified Medium of Galaxy Clusters, ApJ, 883, 138   DOI
31 Ryu, D., Kang, H., Hallman, E., & Jones, T. W. 2003, Cosmological Shock Waves and Their Role in the Large-Scale Structure of the Universe, ApJ, 593, 599   DOI
32 van Weeren, R. J., Brunetti, G., Bruggen, M., et al. 2016, LOFAR, VLA, and CHANDRA Observations of the Toothbrush Galaxy Cluster, ApJ, 818, 204   DOI
33 Ryu, D., Kang, H., & Ha, J.-H. 2019, A Diffusive Shock Acceleration Model for Protons in Weak Quasi-parallel Intracluster Shocks ApJ, 883, 60   DOI
34 Trotta, D. & Burgess, D. 2019, Electron Acceleration at Quasi-perpendicular Shocks in Sub- and Supercritical Regimes: 2D and 3D Simulations, MNRAS, 482, 1154   DOI
35 van Weeren, R., Rottgering, H. J. A., Bruggen, M., & Hoeft, M. 2010, Particle Acceleration on Megaparsec Scales in a Merging Galaxy Cluster, Science, 330, 347   DOI
36 van Weeren, R. J., de Gasperin, F., Akamatsu, H., et al. 2019, Diffuse Radio Emission from Galaxy Clusters, Space Sci. Rev., 215, 16   DOI
37 Vazza, F., Brunetti, G., & Gheller, C. 2009, Shock Waves in Eulerian Cosmological Simulations: Main Properties and Acceleration of Cosmic Rays, MNRAS, 395, 1333   DOI
38 Wittor, D. Vazza, F. & Brggen, M. 2017, Testing Cosmic Ray Acceleration with Radio Relics: a High-resolution Study Using MHD and Tracers, MNRAS, 464, 4448   DOI