DOI QR코드

DOI QR Code

SEMI-ANALYTIC MODELS FOR ELECTRON ACCELERATION IN WEAK ICM SHOCKS

  • Kang, Hyesung (Department of Earth Sciences, Pusan National University)
  • Received : 2020.03.05
  • Accepted : 2020.04.14
  • Published : 2020.06.30

Abstract

We propose semi-analytic models for the electron momentum distribution in weak shocks that accounts for both in situ acceleration and re-acceleration through diffusive shock acceleration (DSA). In the former case, a small fraction of incoming electrons is assumed to be reflected at the shock ramp and pre-accelerated to the so-called injection momentum, pinj, above which particles can diffuse across the shock transition and participate in the DSA process. This leads to the DSA power-law distribution extending from the smallest momentum of reflected electrons, pref, all the way to the cutoff momentum, peq, constrained by radiative cooling. In the latter case, fossil electrons, specified by a power-law spectrum with a cutoff, are assumed to be re-accelerated from pref up to peq via DSA. We show that, in the in situ acceleration model, the amplitude of radio synchrotron emission depends strongly on the shock Mach number, whereas it varies rather weakly in the re-acceleration model. Considering the rather turbulent nature of shocks in the intracluster medium, such extreme dependence for the in situ acceleration might not be compatible with the relatively smooth surface brightness of observed radio relics.

Keywords

References

  1. Akamatsu, H. & Kawahara, H. 2013, Systematic X-Ray Analysis of Radio Relic Clusters with Suzaku, PASJ, 65, 16 https://doi.org/10.1093/pasj/65.1.16
  2. Amano, T. & Hoshino, M. 2009, Electron Shock Surfing Acceleration in Multidimensions: Two-Dimensional Particlein-Cell Simulation of Collisionless Perpendicular Shock, ApJ, 690, 244 https://doi.org/10.1088/0004-637X/690/1/244
  3. Balogh, A. & Truemann, R. A., 2013, Physics of Collisionless Shocks: Space Plasma Shock Waves, ISSI Scientific Report 12 (New York: Springer)
  4. Bell, A. R. 1978, The Acceleration of Cosmic Rays in Shock Fronts - I, MNRAS, 182, 147 https://doi.org/10.1093/mnras/182.2.147
  5. Brunetti, G., & Jones, T. W. 2014, Cosmic Rays in Galaxy Clusters and Their Nonthermal Emission, Int. J. Mod. Phys. D, 23, 30007
  6. Burgess, D. 2007, Particle Acceleration at the Earth's Bow Shock, Lect. Notes Phys., 725. 161
  7. Caprioli, D., & Sptikovsky, A. 2014, Simulations of Ion Acceleration at Non-relativistic Shocks. I. Acceleration Efficiency, ApJ, 783, 91 https://doi.org/10.1088/0004-637X/783/2/91
  8. Caprioli, D., Pop, A. R., & Sptikovsky, A. 2015, Simulations and Theory of Ion Injection at Non-relativistic Collisionless Shocks, ApJ, 798, 28
  9. Drury, L. O'C. 1983, An Introduction to the Theory of Diffusive Shock Acceleration of Energetic Particles in Tenuous Plasmas, Rep. Prog. Phys., 46, 973 https://doi.org/10.1088/0034-4885/46/8/002
  10. Feretti, L., Giovannini, G., Govoni, F., & Murgia, M. 2012, Clusters of Galaxies: Observational Properties of the Diffuse Radio Emission, A&A Rev., 20, 54 https://doi.org/10.1007/s00159-012-0054-z
  11. Gosling, J. T., Thomsen, M. F., & Bame, S. J. 1989, Suprathermal electrons at Earth's bow shock, JGR, 94, 10011 https://doi.org/10.1029/JA094iA08p10011
  12. Guo, X., Sironi, L., & Narayan, R. 2014, Non-thermal Electron Acceleration in Low Mach Number Collisionless Shocks. I. Particle Energy Spectra and Acceleration Mechanism, ApJ, 793, 153
  13. Ha, J.-H., Ryu, D., Kang, H., & van Marle, A. J. 2018, Proton Acceleration in Weak Quasi-parallel Intracluster Shocks: Injection and Early Acceleration, ApJ, 864, 105 https://doi.org/10.3847/1538-4357/aad634
  14. Hoang, D. N., Shimwell, T. W., Stroe, A. et al. 2017, Deep LOFAR Observations of the Merging Galaxy Cluster CIZA J2242.8+5301, MNRAS, 471, 1107 https://doi.org/10.1093/mnras/stx1645
  15. Kang, H. 2011, Energy Spectrum of Nonthermal Electrons Accelerated at a Plane Shock, JKAS, 44, 49
  16. Kang, H. 2016, Re-acceleration Model for the Toothbrush Radio Relic, JKAS, 49, 83
  17. Kang, H., Jones, T. W., & Gieseler, U. D. J. 2002, Numerical Studies of Cosmic-Ray Injection and Acceleration, ApJ, 579, 337 https://doi.org/10.1086/342724
  18. Kang, H. & Ryu, D. 2011, Re-acceleration of Non-thermal Particles at Weak Cosmological Shock Waves, ApJ, 734, 18 https://doi.org/10.1088/0004-637X/734/1/18
  19. Kang, H., Ryu, D., & Jones, T. W. 2012, Diffusive Shock Acceleration Simulations of Radio Relics, ApJ, 756, 97 https://doi.org/10.1088/0004-637X/756/1/97
  20. Kang, H., Ryu, D., & Jones, T. W. 2017, Shock Acceleration Model for the Toothbrush Radio Relic, ApJ, 840, 42 https://doi.org/10.3847/1538-4357/aa6d0d
  21. Kang, H., Ryu, D., & Ha, J.-H. 2019, Electron Preacceleration in Weak Quasi-perpendicular Shocks in Highbeta Intracluster Medium ApJ, 876, 79 https://doi.org/10.3847/1538-4357/ab16d1
  22. Levinson, A., 1992, Electron Injection in Collisionless Shocks, ApJ, 401, 73 https://doi.org/10.1086/172039
  23. Levinson, A., 1996, On the Injection of Electrons in Oblique Shocks, MNRAS, 278, 1018 https://doi.org/10.1093/mnras/278.4.1018
  24. Malkov, M. A. & Drury, L.O'C. 2001, Nonlinear Theory of Diffusive Acceleration of Particles by Shock Waves, Rep. Progr. Phys., 64, 429 https://doi.org/10.1088/0034-4885/64/4/201
  25. Marcowith, A., Bret, A., Bykov, A., et al. 2016, The Microphysics of Collisionless Shock Waves, RPPh, 79, 046901
  26. Matsukiyo, S. & Matsumoto, Y. 2015, Electron Acceleration at a High Beta and Low Mach Number Rippled Shock J. Phys. Conf. Ser., 642, 012017 https://doi.org/10.1088/1742-6596/642/1/012017
  27. Kobzar, O., Niemiec, J., Amano, T., et al. 2019, Electron Acceleration at Rippled Low Mach Number Shocks in Merging Galaxy Clusters, Proc. 36th Int. Cosmic Ray Conf. (ICRC2019), 368
  28. Park, J., Caprioli, D., & Spitkovsky, A. 2015, Simultaneous Acceleration of Protons and Electrons at Nonrelativistic Quasiparallel Collisionless Shocks, PRL, 114, 085003 https://doi.org/10.1103/PhysRevLett.114.085003
  29. Riquelme, M. A. & Spitkovsky, A. 2011, Electron Injection by Whistler Waves in Non-relativistic Shocks, ApJ, 733, 63 https://doi.org/10.1088/0004-637X/733/1/63
  30. Roh, S., Ryu, D., Kang, H., Ha, S., & Jang, H. 2019, Turbulence Dynamo in the Stratified Medium of Galaxy Clusters, ApJ, 883, 138 https://doi.org/10.3847/1538-4357/ab3aff
  31. Ryu, D., Kang, H., Hallman, E., & Jones, T. W. 2003, Cosmological Shock Waves and Their Role in the Large-Scale Structure of the Universe, ApJ, 593, 599 https://doi.org/10.1086/376723
  32. Ryu, D., Kang, H., & Ha, J.-H. 2019, A Diffusive Shock Acceleration Model for Protons in Weak Quasi-parallel Intracluster Shocks ApJ, 883, 60 https://doi.org/10.3847/1538-4357/ab3a3a
  33. Trotta, D. & Burgess, D. 2019, Electron Acceleration at Quasi-perpendicular Shocks in Sub- and Supercritical Regimes: 2D and 3D Simulations, MNRAS, 482, 1154 https://doi.org/10.1093/mnras/sty2756
  34. van Weeren, R., Rottgering, H. J. A., Bruggen, M., & Hoeft, M. 2010, Particle Acceleration on Megaparsec Scales in a Merging Galaxy Cluster, Science, 330, 347 https://doi.org/10.1126/science.1194293
  35. van Weeren, R. J., Brunetti, G., Bruggen, M., et al. 2016, LOFAR, VLA, and CHANDRA Observations of the Toothbrush Galaxy Cluster, ApJ, 818, 204 https://doi.org/10.3847/0004-637X/818/2/204
  36. van Weeren, R. J., de Gasperin, F., Akamatsu, H., et al. 2019, Diffuse Radio Emission from Galaxy Clusters, Space Sci. Rev., 215, 16 https://doi.org/10.1007/s11214-019-0584-z
  37. Vazza, F., Brunetti, G., & Gheller, C. 2009, Shock Waves in Eulerian Cosmological Simulations: Main Properties and Acceleration of Cosmic Rays, MNRAS, 395, 1333 https://doi.org/10.1111/j.1365-2966.2009.14691.x
  38. Wittor, D. Vazza, F. & Brggen, M. 2017, Testing Cosmic Ray Acceleration with Radio Relics: a High-resolution Study Using MHD and Tracers, MNRAS, 464, 4448 https://doi.org/10.1093/mnras/stw2631