• 제목/요약/키워드: cosmic radiation

검색결과 137건 처리시간 0.021초

국외근로자 비과세제도 개선방안 연구 : 국제선항공승무원을 중심으로 (A Study on the Improvement Plan of the Tax-Free System for Overseas Laborers : Focusing on International Air Crew)

  • 이기일;김수련
    • 한국항공운항학회지
    • /
    • 제23권3호
    • /
    • pp.42-52
    • /
    • 2015
  • Since the tax-free system for overseas laborers was implemented in 1974, the tax-free limits of international air crew, overseas construction workers and crewmen of deep-sea fishing ships and ocean-going ships had been identical by 2005, but there are big differences, currently. The Ministry of Strategy and Finance pointed out the poor working environments and international competitiveness of the industries to explain the reason for the differential tax-free limit. From this perspective, the fairness of the tax-free system for overseas laborers was analyzed. This is an empirical study, based on the objective fact. The study finding showed that international air crew were working in the structural flight work environments to threaten the right of health due to jet lag and excessive exposure to high-altitude cosmic radiation. Therefore, it was analyzed there should be a proper system reform to apply the tax-free limits to international air crew which are identical to those applied to overseas construction workers and crewmen of deep-sea fishing ships and ocean-going ships, for a fair taxation.

Optimization study of a clustering algorithm for cosmic-ray muon scattering tomography used in fast inspection

  • Hou, Linjun;Huo, Yonggang;Zuo, Wenming;Yao, Qingxu;Yang, Jianqing;Zhang, Quanhu
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.208-215
    • /
    • 2021
  • Cosmic-ray muon scattering tomography (MST) technology is a new radiation imaging technology with unique advantages. As the performance of its image reconstruction algorithm has a crucial influence on the imaging quality, researches on this algorithm are of great significance to the development and application of this technology. In this paper, a fast inspection algorithm based on clustering analysis for the identification of the existence of nuclear materials is studied and optimized. Firstly, the principles of MST technology and a binned clustering algorithm were introduced, and then several simulation experiments were carried out using Geant4 toolkit to test the effects of exposure time, algorithm parameter, the size and structure of object on the performance of the algorithm. Based on these, we proposed two optimization methods for the clustering algorithm: the optimization of vertical distance coefficient and the displacement of sub-volumes. Finally, several sets of experiments were designed to validate the optimization effect, and the results showed that these two optimization methods could significantly enhance the distinguishing ability of the algorithm for different materials, help to obtain more details in practical applications, and was therefore of great importance to the development and application of the MST technology.

THE QUEST FOR COSMIC RAY PROTONS IN GALAXY CLUSTERS

  • PFROMMER C.;ENSSLIN T. A.
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.455-460
    • /
    • 2004
  • There have been many speculations about the presence of cosmic ray protons (CRps) in galaxy clusters over the past two decades. However, no direct evidence such as the characteristic $\gamma$-ray signature of decaying pions has been found so far. These pions would be a direct tracer of hadronic CRp interactions with the ambient thermal gas also yielding observable synchrotron and inverse Compton emission by additionally produced secondary electrons. The obvious question concerns the type of galaxy clusters most likely to yield a signal: Particularly suited sites should be cluster cooling cores due to their high gas and magnetic energy densities. We studied a nearby sample of clusters evincing cooling cores in order to place stringent limits on the cluster CRp population by using non-detections of EGRET. In this context, we examined the possibility of a hadronic origin of Coma-sized radio halos as well as radio mini-halos. Especially for mini-halos, strong clues are provided by the very plausible small amount of required CRp energy density and a matching radio profile. Introducing the hadronic minimum energy criterion, we show that the energetically favored CRp energy density is constrained to $2\%{\pm}1\%$ of the thermal energy density in Perseus. We also studied the CRp population within the cooling core region of Virgo using the TeV $\gamma$-ray detection of M 87 by HEGRA. Both the expected radial $\gamma$-ray profile and the required amount of CRp support this hadronic scenario.

THE CONTRIBUTION TO THE EXTRAGALACTIC γ-RAY BACKGROUND BY HADRONIC INTERACTIONS OF COSMIC RAYS PRODUCING EUV EMISSION IN CLUSTERS OF GALAXIES

  • KUO PING-HUNG;BOWYER STUART;HWANG CHORNG- YUAN
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.597-600
    • /
    • 2004
  • A substantial number of processes have been suggested as possible contributors to the extragalactic $\gamma$-ray background (EGRB). Yet another contribution to this background will be emission produced in hadronic interactions of cosmic-ray protons with the cluster thermal gas; this class of cosmic rays (CRs) has been shown to be responsible for the EUV emission in the Coma Cluster of galaxies. In this paper we assume the CRs in the Coma Cluster is prototypic of all clusters and derive the contribution to the EGRB from all clusters over time. We examine two different possibilities for the scaling of the CR flux with cluster size: the number density of the CRs scale with the number density of the thermal plasma, and alternatively, the energy density of the CRs scale with the energy density of the plasma. We find that in all scenarios the EGRB produced by this process is sufficiently low that it will not be observable in comparison with other mechanisms that are likely to produce an EGRB.

초기 초신성 잔해의 비열적 전파복사 : 약한 자기장 근사 (NONTHERMAL RADIO EMISSION FROM SNR IN THE PRE-SEDOV STAGE OF EVOLUTION : WEAK MAGNETIC APPROXIMATION)

  • 최승언;정현철
    • 천문학논총
    • /
    • 제10권1호
    • /
    • pp.15-30
    • /
    • 1995
  • It has been recognized that the morphologies of the SNRs from the radio observation are "barrel shaped". To interpret the mechanism of the radiation and the physical state of the environments, we have analytically calculated the dynamical structure of the interacting region in the case where the ejectum has a steep power-law density profile($\rho{\sim}r^{-n}$) and the ambient medium has a shallow power-law density profile($\rho{\sim}r^{-s}$), assuming that the cosmic rays are isotropically accelerated in the shock wave and the magnetic fields are very weak. The calculated synchrotron radio maps show that the emission from the equator is intense and the emissions from the central and polar regions are less intense. Also the thicknesses of the shell are strongly dependent on s and weakly on n. The azimuthal intensity ratio $\alpha$ increases as the efficiency of the cosmic ray acceleration increases and s decreases. We compared the results with the morphology of the SNR A. D. 1006(type I SNR). It does agree with the case of s = 0, w = 0.3 - 0.5. This value for w is consistent with the results by Eichler(1979). It provides us the evidence of the cosmic ray acceleration in the shock wave.

  • PDF

SHOCK ACCELERATION MODEL WITH POSTSHOCK TURBULENCE FOR GIANT RADIO RELICS

  • Kang, Hyesung
    • 천문학회지
    • /
    • 제50권4호
    • /
    • pp.93-103
    • /
    • 2017
  • We explore the shock acceleration model for giant radio relics, in which relativistic electrons are accelerated via diffusive shock acceleration (DSA) by merger-driven shocks in the outskirts of galaxy clusters. In addition to DSA, turbulent acceleration by compressive MHD modes downstream of the shock are included as well as energy losses of postshock electrons due to Coulomb scattering, synchrotron emission, and inverse Compton scattering off the cosmic background radiation. Considering that only a small fraction of merging clusters host radio relics, we favor a reacceleration scenario in which radio relics are generated preferentially by shocks encountering the regions containing low-energy (${\gamma}_e{\leq}300$) cosmic ray electrons (CRe). We perform time-dependent DSA simulations of spherically expanding shocks with physical parameters relevant for the Sausage radio relic, and calculate the radio synchrotron emission from the accelerated CRe. We find that significant level of postshock turbulent acceleration is required in order to reproduce broad profiles of the observed radio flux densities of the Sausage relic. Moreover, the spectral curvature in the observed integrated radio spectrum can be explained, if the putative shock should have swept up and exited out of the preshock region of fossil CRe about 10 Myr ago.

SECONDARY ELECTRONS IN CLUSTERS OF GALAXIES AND GALAXIES

  • HWANG CHORNG- YUAN
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.461-463
    • /
    • 2004
  • We investigate the role of secondary electrons in galaxy clusters and in ultra-luminous infrared galaxies (ULIGs). The radio emission in galaxy clusters and ULIGs is believed to be produced by the synchrotron radiation of relativistic electrons. Nonetheless, the sources of these relativistic electrons are still unclear. Relativistic secondary electrons can be produced from the hadronic interactions of cosmic-ray nuclei with the intra-cluster media (ICM) of galaxy clusters and the dense molecular clouds of ULIGs. We estimate the contribution of the secondary electrons in galaxy clusters and ULIGs by comparing observational results with theoretical calculations for the radio emission in these sources. We find that the radio halos of galaxy clusters can not be produced from the secondary electrons; on the other hand, at least for some ULIGs, the radio emission can be dominated by the synchrotron emission of the secondary electrons.

PRIMORDIAL BLACKHOLE AS A SEED FOR THE COSMIC MAGNETIC FIELD

  • LA DAIL;PARK CHANGBOM
    • 천문학회지
    • /
    • 제29권2호
    • /
    • pp.83-91
    • /
    • 1996
  • We present a model that rotating primordial blackholes(PBHs) produced at the end of inflation generate the random, non-oriented primordial magnetic field. PBHs are copiously produced as the Universe completes the cosmic phase transition via bubble nucleation and tunneling processes in the extended inflation hypothesis. The PBHs produced acquire angular momentum through the mutual tidal gravitational interaction. For PBHs of mass less than 1013g, one can show that the evaporation (photon) luminosity of PBHs exceeds the Eddington limit. Thus throughout the lifetime of the rotating PBH, radiation flow from the central blackhole along the Kerr-geodesic exerts torque to ambient plasma. In the process similar to the Bierman's battery mechanism electron current reaching up to the horizon scale is induced. For PBHs of Grand Unified Theories extended inflation with the symmetry breaking temperature of $T_{GUT}\;\~\;10^{10}$ GeV, which evaporate near decoupling, we find that they generate random, non-oriented magnetic fields of $\~10^{-11}G$ on the last-scattering surface on (the present comoving) scales of $\~O(10)Mpc$.

  • PDF

Recent progress in dark energy research

  • Park, Chan-Gyung
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.32.1-32.1
    • /
    • 2014
  • Astronomical observations strongly suggest that the expansion rate of our universe is currently under acceleration. The nature of the so-called dark energy causing the acceleration is unknown, and it is one of the fundamental mysteries in the present day theoretical cosmology. Here we briefly review the current state of cosmic dark energy research in both theoretical and observational sides. Constraints on dynamical dark energy models (e.g., w-fluid, quintessence, and modified gravity) with recent observational data from type Ia supernovae, cosmic microwave background radiation, and large-scale structures in the universe indicate a preferred direction toward the simplest ${\Lambda}$CDM world model. We also discuss some issues regarding the early dark energy model and the spherical collapse of matter in the presence of dark energy.

  • PDF

Theory of Cosmic Reionization in the New Era of Precision Cosmology

  • 안경진
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.234.2-234.2
    • /
    • 2012
  • As the accuracy in the measurement of cosmological parameters is ever-increasing in this era of precision cosmology, astrophysical constraints on high-redshift universe is also getting tighter. Three dimensional (3D) tomography of the high-redshift (z>~7) universe is expected to be made through the next-generation radio telescopes including various SKA pathfinders and SKA itself, which calls for extensive theoretical predictions. We present our new simulations of cosmic reionization covering the full dynamic range of radiation sources, and also the mock data for the (1) large-scale CMB polarization anisotropy for Planck mission, (2) small-scale, kinetic Sunyaev-Zel'dovich effect for South Pole Telescope project, and (3) 21-cm observations. We show that the new constraints on CMB from Planck will constrain the models of reionization significantly, which then should be tested by 3D tomography of high-redshift universe through the 21-cm observations by future radio telescopes.

  • PDF