• Title/Summary/Keyword: corrosion-inhibition

Search Result 188, Processing Time 0.02 seconds

Studies on Methanolic Extract of Lepidagathis keralensis as Green Corrosion Inhibitor for Mild Steel in 1M HCl

  • Leena, Palakkal;Zeinul Hukuman, N.H.;Biju, A.R.;Jisha, Mullapally
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.231-243
    • /
    • 2019
  • The methanolic extracts of the leaves and stem of the plant Lepidagathis keralensis were evaluated for anticorrosion behavior against mild steel in 1M HCl. Corrosion inhibition studies were done by gravimetric method, electrochemical impedance spectroscopy and potentiodynamic polarization methods. Surface morphology of mild steel in the presence and absence of inhibitors were studied using SEM analysis. UV-Vis studies were also done to evaluate the mechanism of inhibition. Both the extracts showed good inhibition efficiency which increased with increase in concentration of the inhibitor and decreased with increase in temperature. The mechanism of inhibition was explained by adsorption which obeyed Langmuir adsorption isotherm. Thermodynamic calculations revealed a combination of both physisorption and chemisorption of the inhibitor on the surface of mild steel. The extracts behaved as mixed type inhibitors as determined by polarization studies. Quantum chemical studies on Phenoxyethene, one of the major components in the leaf extract of the plant was also carried out to support the experimental results.

Inhibition Effects of Some Amino Acids on the Corrosion of Cobalt in Hydrochloric Acid and Sulfuric Acid (염산과 황산 용액에서 코발트의 부식에 미치는 아미노산의 부식억제효과)

  • Park, Hyunsung;Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.5
    • /
    • pp.327-334
    • /
    • 2019
  • Inhibition effects of cysteine(Cys), methionine(Met), and histidine(His) on the corrosion of cobalt were investigated in deaerated 0.5 M HCl and 0.5 M $H_2SO_4$ solution. All the inhibition efficiency (IE) in the amino acids for the cobalt corrosion depended on the mixed inhibition. However, IE in the solution of $H_2SO_4$ depended more on the anodic and in the solution of HCl on the cathodic inhibition. Amino acid adsorption process on cobalt surface in the solution can be explained by modified Langmuir isotherm. The molecules of histidine dissolved in both of the solution were physically adsorbed due to the electrostatic interaction between the surface of {$Co-Cl^{-{\delta}}$} and the {$-NH_3{^+}$} or {$-NH^+=$} of His. However the other cases of adsorption in this investigation can be explained by chemical adsorption between the empty d-orbital of Co and the lone pair of electron in S-atom in Cys and Met.

Anthocyanins Extracted from Grapes as Green Corrosion Inhibitors for Tin Metal in Citric Acid Solution

  • Mohamed, Mervate Mohamed;Alsaiari, Raiedhah;Al-Qadri, Fatima A.;Shedaiwa, Iman Mohammad;Alsaiari, Mabkhoot;Musa, Esraa Mohamed;Alkorbi, Faeza;Alkorbi, Ali S.
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.381-389
    • /
    • 2022
  • Cyclic Voltammetry and weight loss measurements were used to investigate corrosion prevention of tin in a 0.5M citric acid solution containing Anthocyanins extracted from grapes at various concentrations and temperatures. Results showed that the investigated chemicals, Anthocyanins extracted from grapes, performed well as tin corrosion inhibitors in 0.5M citric acid. Increasing the concentration of Anthocyanins increased their corrosion inhibition efficiencies. When the temperature dropped, their inhibition efficiencies, increased indicating that higher temperature tin dissolution predominated the adsorption of Anthocyanins at the surface of tin metal. When inhibitor concentrations were increased, their inhibition efficiencies were also increased. These results revealed that corrosion of tin metal was inhibited by a mixed type of adsorption on the metal surface. The adsorption isotherm of Langmuir governed the adsorption of Anthocyanins. Thermodynamic parameters such as the enthalpy of adsorption, the entropy of adsorption, and Gibbs free energy and kinetic parameters such as activation energy, enthalpy of activation, and entropy of activation were computed and discussed in this study.

The Effect of Temperature on the Corrosion of Mild Steel in H3PO4 Containing Halides and Sulfate Ions

  • Chandrasekaran, V.;Kannan, K.;Natesan, M.
    • Corrosion Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.8-14
    • /
    • 2005
  • The corrosion behaviour of mild steel in phosphoric acid solution in the presence and absence of pollutants viz. Chloride, Fluoride and Sulfate ions at 302K-333K was studied using mass loss and potentiostatic polarization methods. The addition of chloride and sulfate ions inhibits the mild steel corrosion in phosphoric acid while fluoride ions stimulate it. The effect of temperature on the corrosion behaviour of mild steel indicated that inhibition of chloride and sulfate ions decreased with increasing temperature. The adsorption of these ions (Chloride and sulfate) on the mild steel surface in acid has been found to obey Langmuir adsorption isotherm. The values of activation energy (Ea) and free energy of adsorption ($\Delta$) indicated physical adsorption of these ions (chloride and sulfate) on the mild steel surface. The plot of $logW_{f}$ against time (days) at 302K gives a straight line, which suggested that it obeys first order kinetics and also calculate the rate constant k and half-life time $t_{1/2}$.

Corrosion Inhibition Properties of Steel bars in Reinforced Concrete Using Superplasticizer with Air Entrained Agent (고성능AE감수제를 사용한 콘크리트의 철근부식 저항성)

  • Lee, Mun-Hwan;Jung, Mi-Kyung;Oh, Se-Chul;Bae, Kyu-Woong;Seo, Chee-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.149-160
    • /
    • 2000
  • As systematic methodologies are required for the evaluation on the durability of reinforced concrete structure, it is necessary to study and examine every factor which deteriorates the durability of structures. This paper aims to define factors affecting rebar corrosion and to establish a basis for a prediction of serviceability, regarding a state of harmful corrosion as a state when crack begins on the surface of concrete. The study results are followings; The corrosive current has changed by types of mixture, and this property enables the evaluations of corrosion resistance by mixture and concrete cover. The specimen using AE superplasticizer has better corrosion-resistance properties than non-AE specimen, as well those having low W/C and high unit cement weight. The procedure for calculation of durable year in this study is able to use as an indicator to establish mixture factors such as unit cement weight, W/C, amount of admixture, etc.

  • PDF

Insights into the corrosion inhibition of steel rebar in chloride-contaminated synthetic concrete pore solutions by a new hydrazone (새로운 히드라존에 의한 염화물 오염 합성 콘크리트 공극 솔루션에서 철근의 부식 억제에 대한 통찰력)

  • Lgaz, Hassane;Lee, Han-seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.101-102
    • /
    • 2022
  • A new hydrazone derivatives namely (E)-N'-(4-(dimethylamino)benzylidene)-2-(5-methoxy-2-methyl-1H-indol-3-yl)acetohydrazide (HIND) has been confirmed for mitigating the corrosion of the steel rebar exposed to chloride contaminated synthetic concrete pore solution (ClSCPS). The mitigation of corrosion properties has been characterized by weight loss and electrochemical methods (Electrochemical impedance, Potentiodynamic polarization studies) as well as surface observations. The presence of HIND in the ClSCPS decreased the corrosion of steel rebar by adsorption of HIND molecules on the surface of the steel rebar. The optimal HIND concentration was 0.5 mmol/L, corresponding to an inhibition efficiency of 88.4%. The use of HIND enables the corrosion process to have a higher energy barrier. X-ray photo electron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS), and X-ray diffraction (XRD) spectroscopy interpretations confirmed that HIND mitigates the corrosion attack on the surface steel rebar.

  • PDF

Effect of β-Blocker Inhibitors on Aluminum Corrosion (알루미늄 부식에 대한 베타-차단제 억제제 효과)

  • Fouda, A. S.;El-Ewady, G. Y.;Shalabi, K.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.268-278
    • /
    • 2011
  • Corrosion of aluminum in 0.1 M HCl solution in the absence and presence of ${\beta}$-blocker inhibitors (atenolol, propranolol, timolol and nadolol) was investigated using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The inhibition efficiency increased with inhibitor concentration and decreased with rise of temperature. Potentiodynamic polarization curves revealed that they acted as cathodic inhibitors. Some thermodynamic parameters were calculated and discussed. All inhibitors were adsorbed on Al surface obeying Frumkin isotherm. All EIS tests exhibited one capacitive loop which indicates that the corrosion reaction is controlled by charge transfer process. The inhibition efficiencies of all test methods were in good agreement.

High-temperature electrochemical corrosion behavior of SA106 Grade B carbon steel with corrosion inhibitors in HyBRID solution

  • Sung-Wook Kim;Sang-Yoon Park;Chang-Hyun Roh;Sun-Byeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2256-2262
    • /
    • 2023
  • The electrochemical corrosion behaviors of SA106 Grade B (SA106B) carbon steel in H2SO44-N2H4 and H2SO4-N2H4-CuSO4 solutions at 95 ℃ have been investigated with the addition of commercial corrosion inhibitors (CI#30 and No. 570S), to determine the stability of SA106B in the hydrazine-based reductive metal ion decontamination (HyBRID) process. The potentiodynamic polarization experiment revealed that the corrosion inhibitors were capable of lowering the corrosion rate of SA106B in H2SO4-N2H4 solution. It was found that the corrosion inhibitors induced formation of fixed surface layer on the carbon steel upon the corrosion. This corrosion inhibition performance was reduced in the presence of CuSO4 in the solution owing to the chemical reactions between organic compounds in the corrosion inhibitors and CuSO4. CI#30 showed a better corrosion inhibition effect in the H2SO4-N2H4-CuSO4 solution. Although the corrosion inhibitors can provide better stability to SA106B in the HyBRID solution, their application should be carefully considered because it may result in reduced decontamination performance and increased secondary waste generation.

Inhibition Effects of Some Amino Acids on the Corrosion of Nickel in Hydrochloric Acid and Sulfuric Acid (염산과 황산 용액에서 니켈의 부식에 미치는 아미노산의 부식억제효과)

  • Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.2
    • /
    • pp.125-131
    • /
    • 2015
  • Inhibition effects of histidine (His), methionine (Met) on the corrosion of nickel were investigated in deaerated 0.5 M HCl and 0.5 M $H_2SO_4$ solution. All the inhibition efficiency for the nickel corrosion depended on the anodic inhibition. Amino acid adsorption process on nickel surface in the solution of HCl can be explained by modified Langmuir isotherm, however, in the solution of $H_2SO_4$ by Temkin logarithmic isotherm due to the interaction between the adsorbed molecules. The molecule of histidine dissolved in HCl-solution were physically adsorbed due to the electrostatic interaction between the surface of {$Ni-Cl^-$} and the {$-NH{_3}^+$} and {$-NH^+=$} of His. However the other cases of adsorption in this investigation can be explained by chemical adsorption between the empty d-orbital of Ni and the lone pair of electron in His and Met.

Nanoparticles Modified With Cationic Thiol Surfactant as Efficient Inhibitors for the Corrosion of Carbon Steel

  • Azzam, Eid M.S.;Sami, Radwa M.;Alenezi, Khalaf M.;El Moll, Hani;Haque, A.
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.308-316
    • /
    • 2021
  • In this work, we report synthesis, characterization and corrosion inhibition properties of cationic thiol surfactant-capped silver (SC-Ag-NPs) and gold (SC-Au-NPs) nanoparticles. SC-Ag-NPs and SC-Au-NPs were characterized using regular techniques include TEM. Corrosion study was carried out using carbon steel (CS) in 3.5% NaCl aqueous solution and characterized using multiple electrochemical techniques. Our results suggest that the paint containing SC-Ag-NPs and SC-Au-NPs endow efficient corrosion protection to the CS. Especially, SC-Au-NPs based paint form a stronger barrier between the metal and the corrosive ions, leading to better inhibition properties.