염산과 황산 용액에서 코발트의 부식에 미치는 아미노산의 부식억제효과

박현성 · 김연규*

한국외국어대학교 자연과학대학 화학과 (접수 2019. 5. 15; 게재확정 2019. 6. 13)

Inhibition Effects of Some Amino Acids on the Corrosion of Cobalt in Hydrochloric Acid and Sulfuric Acid

Hyunsung Park and Younkyoo Kim*

Department of Chemistry, College of Natural Science, Hankuk University of Foreign Studies, Yongin 17035, Korea. *E-mail: kimyk@hufs.ac.kr (Received May 15, 2019; Accepted June 13, 2019)

요 약. 코발트의 부식에 대한 시스테인(Cys), 메티오닌(Met), 히스티딘(His)의 부식억제 효과를 공기를 제거한 0.5 M HCl과 0.5 M H₂SO₄ 용액에서 연구하였다. 코발트에 대한 아미노산의 부식 억제효과는 혼합 부식억제 방식에 의하여 나타나지만, H₂SO₄ 용액 에서는 산화반응 속도의 감소가 그리고 HCl 용액에서는 환원반응 속도의 감소가 더 큰 영향을 미쳤다. 코발트 표면에서 일어나는 아미노산의 흡착은 수정된 Langmuir 흡착 등온식을 따르며 HCl, H₂SO₄ 용액에서 흡착되는 히스티딘은 히스티딘의 {-NH₃⁺}, {-NH⁺=} 와 코발트 표면의 {Co-Cl⁻⁵}와의 정전기적 인력에 의한 물리흡착으로, 다른 경우는 Co의 빈 d-orbital과 시스테인 또는 메티오닌 에 존재하는 S의 비공유 전자쌍 사이에서 일어나는 화학흡착으로 설명할 수 있었다.

주제어: 코발트, 부식억제, 아미노산, Langmuir

ABSTRACT. Inhibition effects of cysteine(Cys), methionine(Met), and histidine(His) on the corrosion of cobalt were investigated in deaerated 0.5 M HCl and 0.5 M H₂SO₄ solution. All the inhibition efficiency (IE) in the amino acids for the cobalt corrosion depended on the mixed inhibition. However, IE in the solution of H₂SO₄ depended more on the anodic and in the solution of HCl on the cathodic inhibition. Amino acid adsorption process on cobalt surface in the solution can be explained by modified Langmuir isotherm. The molecules of histidine dissolved in both of the solution were physically adsorbed due to the electrostatic interaction between the surface of $\{\text{Co-Cl}^{-\delta}\}$ and the $\{-\text{NH}_3^+\}$ or $\{-\text{NH}^+=\}$ of His. However the other cases of adsorption in this investigation can be explained by chemical adsorption between the empty d-orbital of Co and the lone pair of electron in S-atom in Cys and Met.

Key words: Cobalt, Corrosion inhibition, Amino acids, Langmuir

서 론

코발트(Cobalt, Co)는 다른 철족 금속(ferrous metals, Fe, Ni)과 함께 가장 이용도가 높은 중요한 금속 중 하나이다. 근래에 Co와 관련된 물질들이 초합금(super alloy), 자성물 질(magnetic device) 및 의료제품 등으로 사용의 영역이 확 장되면서 Co의 부식과 부동화에 관한 연구가 활발히 진 행되고 있다.¹⁻⁵ Chloride (Cl⁻)와 bicarbonate (HCO₃⁻) 용액 과 같은 특정 환경에서는 Co의 산화피막이 깨지는 현상 도 보고되었다.⁶⁻¹² 따라서 코발트 뿐만 아니라 코발트를 포함한 여러 가지 합금의 부식억제에 관한 연구가 활발히 진행되고 있다.¹³⁻¹⁷

산소(O), 질소(N), 황(S)을 포함하는 극성 유기분자 또는

 π -전자를 갖는 유기분자들이 금속 표면에 흡착이 잘 되어 금속의 부식을 억제하는 것으로 알려져 있으나, 이러한 부식 억제제의 독성이 문제가 되면서 아미노산과 같은 친환경 물질을 이용한 부식 억제 연구가 근래에 진행되고 있다.¹⁷⁻¹⁹ 본 연구에서는 이미 보고한 Co의 부식과 부동화에 관한 연구에^{20,21} 이어 부식 억제제로 치환기(substituent)에 S-atom을 포함하는 cysteine, methionine과, N-atom을 포함하는 histidine 을 0.5 M HCI과 0.5 M H₂SO₄ 수용액에 첨가하여 Co에 대한 아미노산의 흡착과정과 부식 억제 효과를 조사하였다.

실 험

모든 전기화학적 측정은 개인용 컴퓨터(pc)로 조정하는

Gamry사의 Model G 750/ZRA Potentiostat/Galvanostat와 동일 사의 EuroCell System을 사용하였으며, 측정한 데이터는 동일 사가 제공한 Gamry Echem Analyst software를 사용하여 분석하였다. 이때 사용한 전해 용기(cell)는 기준전극 과 보조 전극을 각각 소결 유리(fritted glass)로 칸막이 하여 세 부 분으로 분리된 용기(three compartment cell)가 되도록 구성 하였다.

작업전극(WE)은 Good Fellow사의 순도 99.9%, 직경 3.0 mm 인 Co 막대를 절연성 epoxy 수지로 가공하여 원판형 Co-DISK 전극을 만들어 사용하였으며, 매번 측정 전에 No. 2000의 SiC 연마지(emery paper)로 Co 전극의 표면을 연마 한 후 증류수로 씻어 사용하였다. 보조전극은 백금선(Ptwire)을, 기준전극은 포화 카로멜 전극(SCE)을 사용하였 다. 따라서 본 논문에 표시한 전위는 포화 SCE에 대한 값 이다. 공기가 제거된 용액(deaerated solution)에서의 측정을 위 하여 모든 실험은 아르곤(Ar)으로 15분 동안 purging한 후 Ar 분위기에서 실행하였다.

부식 억제제로 사용한 아미노산은 Aldrich 사의 순도 ≥98%인 L-Cysteine (Cys), L-Methionine (Met), L-Histidine (His)을 사용하였으며 HCl과 H₂SO₄는 시중에서 구입한 분 석급 시약을 사용하였다.

결과 및 고찰

Inhibition Efficiency of Amino Acids

Fig. 1과 2는 0.5 M H₂SO₄와 0.5 M HCl 용액에 Cys를 첨 가하여 측정한 Potentiodynamic polarization (Pd) 곡선들이다. 각 경우에 환원영역의 Tafel line과 평형전위(equilibrium potential)의 교점으로부터 부식전위와 부식전류를 구했으 며, 이로부터 산출한 전기화학적 인자들을 Table 1에 요약 하였다. Cys의 농도가 증가함에 따라 0.5 M 황산 용액에 서는 환원전류보다 산화전류가 크게 감소하여 부식전위는 양의 방향으로 이동하였다. 그러나 0.5 M 염산 용액에서는

Figure 1. Potentiodynamic polarization curves for the cobalt electrode in deaerated solution of $0.5 \text{ M} \text{ H}_2\text{SO}_4$, containing various concentration of cysteine at a scan rate of 1 mV/sec.

Figure 2. Potentiodynamic polarization curves for the cobalt electrode in deaerated solution of 0.5 M HCl, containing various concentration of cysteine at a scan rate of 1 mV/sec.

산화전류보다 환원전류가 현저하게 감소하여 부식전위가 음의 방향으로 이동하는 환원 억제(cathodic inhibition) 현상이

Table 1. Corrosion parameters for the different concentration of cysteine in 0.5 M H₂SO₄ and HCl. [Cys], M; I_{corr}, uA/cm²; E_{corr}, V; IE, %

		0.5 M H ₂ SO ₄		0.5 M HCl			
[Cys], M	-E _{corr} , V	I _{corr} , uA/cm ²	IE, %	-Ecorr, V	I _{corr} , uA/cm ²	IE, %	
0	0.477	634	0	0.462	242	0	
10^{-6}	0.483	552	12.9	0.454	191	21.1	
10 ⁻⁵	0.475	291	54.1	0.478	148	38.8	
5×10 ⁻⁵	0.487	84.7	86.6	0.484	53	78.1	
10 ⁻⁴	0.486	77.3	87.8	0.488	55	72.3	
5×10 ⁻⁴	0.479	43.9	93.1	0.489	37.5	84.5	
10 ⁻³	0.471	53.4	91.6	0.485	42	82.7	
5×10 ⁻³	0.470	52.1	91.8	0.482	44.7	81.5	
10 ⁻²	0.466	56.8	91.1	0.473	46	81.0	

Journal of the Korean Chemical Society

Figure **3.** The variation of IE values vs the concentration of cysteine of Co electrode in 0.5 M HCl or 0.5 M H₂SO₄ solution.

관측되었다. *Table* 1에 있는 억제효율(inhibition efficiency, IE) 은 *Fig.* 3에서 보는 바와 같이 0.5 M H₂SO₄ 용액의 경우가 0.5 M HCl 용액보다 좋으며 특히 10⁻⁴ M 이상에서는 약 10% 증가하였다. IE 값이 큰 것은 Co-표면에 Cys가 잘 흡 착됨을 의미한다. *Fig.* 1과 *Fig.* 2에서 모두 환원전류의 감소 정도가 비슷해 보이는 것으로 보아 부식전위보다 음의 전 위에서는 Cys의 흡착이 모두 잘 일어나는 것으로 보인다. 그러나 부식전위보다 양의 영역에서는 H₂SO₄ 용액의 경 우 Cys의 흡착이 잘 일어 나지만 HCl 용액에서는 CI⁻가 선 택흡착(specific adsorption)되어 Cys의 흡착을 방해하는 것 으로 보인다.

Met의 농도가 증가할 때 변하는 Pd-곡선들을 Fig. 4와 5에 나타내었으며 전기화학 인자들은 Table 2에 요약하였다. Fig. 4 (0.5 M H₂SO₄ 용액)와 Fig. 5 (0.5 M HCl 용액)에서 보는 바와 같이 Met의 농도가 증가함에 따라 환원반응과 산화반응의 속도가 모두 감소하는 것으로 보아 Met는 혼 합 억제제(mixed inhibitor)의 역할을 하는 것으로 보인다. 그러나 0.5 M H₂SO₄ 용액에서 환원전류보다 산화전류가 크게 감소하여 부식전위가 양의 방향으로 이동하는 정도가

Figure **4.** Potentiodynamic polarization curves for the cobalt electrode in deaerated solution of $0.5 \text{ M} \text{ H}_2\text{SO}_4$, containing various concentration of methionine at a scan rate of 1 mV/sec.

Figure **5.** Potentiodynamic polarization curves for the cobalt electrode in deaerated solution of 0.5 M HCl, containing various concentration of methionine at a scan rate of 1 mV/sec.

0.5 M HCl 용액의 경우보다 크게 관측되었다. 이는 앞에서 언급한 바와 같이 HCl 용액의 경우에 산화 영역에서 Co-표면에 Cl⁻가 선택흡착이 잘 일어나 Met의 화학흡착을 방

Table 2.	Corrosion param	eters for the different	concentration of me	thionine in 0.5 M	H_2SO_4 and HCI .	[Met], M; I _{corr} ,	uA/cm^2 ; E_{corr} ,	V; IE, %
----------	-----------------	-------------------------	---------------------	-------------------	-----------------------	-------------------------------	--------------------------	----------

		0.5 M H ₂ SO ₄		0.5 M HCl				
[Met], M	-E _{corr} , V	I_{corr} , uA/cm^2	IE, %	-Ecorr, V	I _{corr} , uA/cm ²	IE, %		
0	0.477	634	0	0.462	242	0		
10^{-6}	0.459	471	25.7	0.455	134	44.6		
5×10 ⁻⁶	0.455	331	47.8	0.458	157	35.1		
10 ⁻⁵	0.464	254	59.9	0.46	178	26.5		
10 ⁻⁴	0.459	148	76.7	0.458	164	32.2		
5×10^{-4}	0.457	126	80.1	0.489	120	50.4		
10^{-3}	0.430	126	80.1	0.446	93	61.6		
5×10 ⁻³	0.443	51.3	91.9	0.461	71	70.7		
10 ⁻²	0.423	60.9	90.4	0.457	66	72.7		

Figure 6. The variation of IE values vs the concentration of amino acids of Co electrode in 0.5 M HCl or 0.5 M H₂SO₄ solution.

Figure 7. Potentiodynamic polarization curves for the cobalt electrode in deaerated solution of 0.5 M H₂SO₄, containing various concentration of histidine at a scan rate of 1 mV/sec.

해하기 때문일 것이다. *Fig.* 6에서 0.5 M H₂SO₄ 용액의 경 우가 0.5 M HCl 용액의 경우보다 부식억제 효율이 약 20%

Figure 8. Potentiodynamic polarization curves for the cobalt electrode in deaerated solution of 0.5 M HCl, containing various concentration of histidine at a scan rate of 1 mV/sec.

정도 더 높게 관측된 것 역시 황산 용액에서는 Met가 화 학흡착 되지만, 염산 용액에서는 CI⁻가 먼저 선택흡착 된 다음에 Met 분자의 {-NH₃⁺}가 물리흡착 되기 때문일 것 이다.

Fig. 7과 Fig. 8은 0.5 M H₂SO₄와 0.5 M HCl 용액에 His를 첨가하여 측정한 Pd-곡선들이다. 이로부터 산출한 전기화 학적 인자들을 *Table* 3에 요약하였다. His의 농도가 증가 함에 따라 0.5 M H₂SO₄와 0.5 M HCl 용액 모두에서 환원 전류보다 산화전류가 더 감소하기 때문에 부식전위가 양 의 방향으로 이동하였다. *Table* 3과 *Fig.* 9가 보이는 His의 부식 억제효율(inhibition efficiency, IE)은 Cys와 Met의 경 우와 다르게 0.5 M H₂SO₄ 용액에서보다 0.5 M HCl 용액 에서 높게 관측되었다. 이는 His의 N-atom 보다 Cys와 Met 의 분자구조에 있는 S-atom이 코발트와 화학 흡착이 잘 일어나는 반면 HCl 용액에서는 His의 분자구조에 있는 imidazole 고리의 iminium 이온{-NH⁺=}의 양전하가 Co 표

Table 3. Corrosion parameters for the different concentration of histidine in 0.5 M H₂SO₄ and 0.5 M HCl. [His], M; I_{corr} , uA/cm²; E_{corr} , V; IE, %

		0.5 M H ₂ SO ₄		0.5 M HCl				
[His], M	-E _{corr} , V	I _{corr} , uA/cm ²	IE, %	-Ecorr, V	I _{corr} , uA/cm ²	IE, %		
0	0.477	634	0	0.462	242	0		
10^{-6}	0.484	625	1.4	0.451	116	52.0		
5×10 ⁻⁶	0.469	539	15.0	0.448	86.4	64.3		
10-5	0.476	460	27.4	0.453	66.2	72.6		
5×10 ⁻⁵	0.467	366	42.3	0.453	70.1	71.0		
10^{-4}	0.481	422	33.4	0.451	71.4	70.5		
5×10 ⁻⁴	0.46	370	41.6	0.455	57.0	76.4		
10^{-3}	0.459	331	47.8	0.462	56.8	76.5		
5×10 ⁻³	0.452	258	59.3	0.447	51	78.9		
10^{-2}	0.456	209	67.0	0.454	37.3	84.6		

Journal of the Korean Chemical Society

k

Figure 9. The variation of IE values vs the concentration of histidine of Co electrode in 0.5 M HCl or 0.5 M H₂SO₄ solution.

면에 흡착된 CI-의 음전하에 물리적 흡착이 효과적으로 일어나기 때문인 것으로 보인다.

The Adsorption Isotherm of Amino Acids

 Table 1,2,3의 부식억제 효율은 식 (1)을 이용하여 구하

 였으며 각 아미노산의 흡착에 의한 덮임률(coverage, θ)은

 식 (2) 즉 IE/100 이다. 식 (1)과 식 (2)에서 I_{cor}은 아미노산

 이 없는 0.5 M의 염산 또는 황산용액에서의 부식전류이고,

 I_{corr(inh})는 아미노산이 첨가된 용액의 부식전류이다.

$$IE = \frac{I_{corr} - I_{corr(inh)}}{I_{corr}} \times 100$$
(1)

$$\theta = \frac{I_{corr} - I_{corr(inh)}}{I_{corr}} \tag{2}$$

Cys, Met, His의 pK_{al}은 각각 1.71, 2.18, 1.6이며,²² 본 연 구에서 사용한 0.5 M HCl과 0.5 M H₂SO₄ 용액은 pH가 1.0 보다 훨씬 낮은 용액 이므로 사용한 아미노산들의 구조는 RCH(NH₃⁺)(CO₂H)와 같은 산성 구조일 것이다.

흡착된 아미노산 분자들 사이에 상호작용이 없을 경우 Langmuir isotherm^{23,24}에 따른다면, 아미노산의 농도 C와, 식 (2)으로부터 구한 덮임률 θ는 식 (3)과 같은 평형식으로 나타낼 수 있으며, 흡착 평형상수 Kads와 흡착자유에너지 ΔG^{o}_{ads} 사이엔 식 (4)이 성립한다. 이 식에서 Csolv는 물의 경우 55.5 mol/dm³, R은 기체상수, T는 절대온도이다. Langmuir isotherm 식 (3)을 변형하면 식 (5)이 되고, C의 변화에 대 하여(C/θ)를 도시하여 기울기가 1.0에 접근할 때 절편으로 부터 흡착 평형 상수를 산출할 수 있다. 금속 표면 위에 흡 착된 물질 사이의 상호작용으로 인해 기울기가 1.0을 벗 어나면 Langmuir isotherm을 수정한 식 (6)을 적용하여 절 편(n/Kads) 으로부터 Kads를 계산하게 된다.²⁵

$$K_{ads}C = \frac{\theta}{(1-\theta)} \tag{3}$$

$$X_{ads} = \frac{1}{C_{solv}} e^{\frac{\Delta G_{ads}}{RT}}$$
(4)

$$\frac{C}{\theta} = \frac{1}{K_{ads}} + C \tag{5}$$

$$\frac{C}{\theta} = \frac{n}{K_{ads}} + nC \tag{6}$$

식 (6)으로부터 구한 흡착 평형상수를 식 (4)에 대입하여 산출한 표준 흡착 자유에너지(ΔG°_{ads})가 $\Delta G^{\circ}_{ads} > -20$ kJ/mole 일 경우 물리흡착(physisorption)이, $\Delta G^{\circ}_{ads} < -40$ kJ/mole 일 경우에는 화학흡착(chemisorption)이 일어나며 -20 kJ/mole < $\Delta G^{\circ}_{ads} < -40$ kJ/mole 일 때는 강한 물리흡착 또는 약한 화학흡착이 일어난다고 보고되어 있다.²⁶⁻³⁰

Cysteine의 경우. *Fig.* 1과 *Fig.* 2에서 구한 *Table* 1의 값 들 로부터 *Fig.* 10을 얻었다. *Fig.* 10은 식 (6)이 잘 적용되며 이로부터 Co-표면에 Cys가 흡착되는 과정은 modified Langmuir isotherm임을 알 수 있다. H₂SO₄ 용액의 경우 등온 식은 {[Cys]/ θ = 1.09[Cys] + 9.76 × 10⁻⁶}으로 K_{ads} = 1.12 × 10⁷이 되고 아울러서 표준 흡착에너지는 Δ G^o_{ads} =-50.2 kJ/mol 이었다. 따라서 *Fig.* 1에서 환원과 산화전류가 감소하 는 것으로 보아 환원과 산화가 일어나는 전 영역에서 Cys 의 구조 HS-CH(NH₃⁺) (CO₂H)에 있는 S-atom의 고립전자 쌍(lone pair)이 Co-표면에 배위되는 화학흡착이 일어나는 것으로 보인다.

HCl 용액의 경우 Langmuir 등온 식은 {[Cys]/ θ = 1.20[Cys] + 6.04 × 10⁻⁶}, 흡착 평형상수는 K_{ads} = 1.99 × 10⁶, 표준 흡 착에너지는 Δ G^o_{ads} = -40.2 kJ/mol으로 계산되었다. *Fig.* 2

Figure 10. Curve fitting of cysteine adsorption on cobalt by Langmuir isotherm in deaerated $0.5 \text{ M H}_2\text{SO}_4$ and 0.5 M HCl.

에서 환원전류는 [Cys]의 증가에 따라 감소하였으나, 산 화전류의 변화는 분명하지 않았다. 따라서 환원영역에서는 황산 용액의 경우에 언급한 바와 같은 화학흡착이 일어날 것으로 기대할 수 있지만, 산화영역에서는 Co-표면의 전위 가 영 전하 전위(E_{pzc}) 보다 양이 되므로 +δ전하를 갖게 되어 Cl⁻의 선택흡착이 일어나 전극 표면이 {Co-Cl}⁻⁵와 같이 음의 전하를 같게 되어 Cys의 화학흡착보다는 Cys 분자구 조에 있는 {-NH₃}⁺의 양전하와 정전기적 인력에 의한 물 리흡착이 일어나 H₂SO₄용액의 경우 (ΔG[°]_{ads} = -50.2 kJ/mol) 보다 높은 표준 흡착에너지 (ΔG[°]_{ads} = -40.2 kJ/mol)를 갖는 것으로 보인다.

Methionine의 경우. *Fig.* 4와 *Fig.* 5에서 구한 *Table* 2의 값 들로부터 *Fig.* 11을 얻었으며, *Fig.* 11은 modified Langmuir isotherm 식 (6)이 잘 적용되었다. H₂SO₄ 용액의 경우 등온 식 은 {[Met]/θ = 1.09[Met] + 3.20 × 10⁻⁵}으로 흡착 평형상수 K_{ads} = 3.41 × 10⁵이며 표준 흡착에너지 ΔG^{9}_{ads} = -41.5 kJ/mol 이었 다. 따라서 *Fig.* 4에서 환원과 산화전류가 감소하는 것으로 보아 환원과 산화가 일어나는 전 영역에서 Met의 구조 H₃C-S-CH(NH₃⁺)(CO₂H)에 있는 S-atom의 전자 쌍(lone pair) 이 Co-표면에 배위되는 화학흡착이 일어날 것으로 보인다. 그러나 앞에서 언급한 Cys의 경우에 관측된 표준 흡착에너 지(ΔG^{9}_{ads} = -50.2 kJ/mol) 보다 높은 ΔG^{9}_{ads} = -41.5 kJ/mol 이 측 정되었다. 이는 Met의 구조에 있는 {H₃C-S-}와 Cys의 구조 에 있는 {H-S-}의 상대적인 크기에서 오는 입체효과(steric effect)의 영향으로 Met에 있는 {-S-}의 고립전자 쌍이 Co-표면에 화학 흡착되는 것을 방해한 것으로 보인다.

HCl 용액의 경우 modified Langmuir isotherm의 등온 식은 {[Met]/θ = 1.37[Met] + 1.33 × 10⁻⁴}으로 흡착 평형상수 K_{ads} = 1.03 × 10⁴, 표준 흡착에너지 ΔG^o_{ads} = -32.8 kJ/mol이었다. 이러한 표준 흡착에너지는 HCl 용액에서 Co-표면에 Met

Figure 11. Curve fitting of methionine adsorption on cobalt by Langmuir isotherm in deaerated 0.5 M H₂SO₄ and 0.5 M HCl.

의 흡착은 강한 물리흡착 또는 약한 화학흡착으로 일어나 는 것으로 보인다. 화학흡착의 경우에는 Co-표면에 Met의 {H₃C-S-}이 흡착하므로 Cys의 흡착과 비교하면 입체효과 가 발생하지만, 물리흡착이 일어날 경우에는 Co-표면, {Co-Cl}-⁵에 Met나 Cys 모두 {⁺H₃N-} 부분이 흡착하므로 입체효과가 발생하지 않을 것이다.

Histidine의 경우. *Fig.* 7과 *Fig.* 8에서 구한 *Table* 3의 값 들로부터 *Fig.* 12를 얻었으며 이러한 graph는 modified Langmuir isotherm 식 (6)이 잘 적용되었다. H₂SO₄ 용액의 경우 등온 식은 {[His]/θ = 1.52[His] + 2.33 × 10⁻⁴}으로 흡착 평 형상수 K_{acks} = 6.48 × 10³이며 표준 흡착에너지 ΔG°_{ads} = -31.7 kJ/mol 이었다. 반면에 HCl용액에서는 [His]의 증가에 따 라 산화전류와 환원전류의 감소 폭이 H₂SO₄ 용액의 경우 보다 조금 크게 관측되었으며, 적용된 Langmuir 등온 식은 {[His]/θ = 1.19[His] + 5.15 × 10⁻⁵}으로 흡착 평형상수 K_{ads} = 2.31 × 10⁴이며 표준 흡착에너지는 ΔG°_{ads} = -34.8 kJ/mol 이었다. *Fig.* 10~12로부터 얻은 열역학적 값들을 *Table* 4에 요약하였다.

앞에서 언급한 바와 같이 His의 pK_{a1}은 1.6이며 0.5 M H₂SO₄ 용액과 0.5 HCl 용액의 pH는 1.6 보다 강한 산성이 므로 His는 *Fig.* 12에 삽입한 구조와 같은 (ImH⁺)CH(NH₃⁺) (COOH) 형태로 존재할 것이다. 그리고 일반적으로 금속 전극의 영 전하 전위(potential of zero charge, E_{pzz})는 부식 전위보다 약간 음의 값을 가지므로 선택흡착이 일어나지 않을 것으로 예상되는 H₂SO₄ 용액의 경우 Co-표면은 산 화영역에서 양의 전하(δ ⁺), 환원영역에서 음의 전하(δ -)를 띄게 된다.³¹ 따라서 산화영역에서는 His 분자의 carbonyl group (—C=O)의 O 원자에 있는 전자쌍이 Co의 빈 d-orbital 에 배위되는 화학흡착이 일어날 수 있지만 인접한 {-NH₃⁺} 의 정전기적 미는 힘(repulsive force) 때문에 매우 약한 흡착일

Figure 12. Curve fitting of histidine adsorption on cobalt by Langmuir isotherm in deaerated $0.5 \text{ M H}_2\text{SO}_4$ and 0.5 M HCl.

Journal of the Korean Chemical Society

Table 4. Adsorption parameters from Langmuir isotherm for some amino acids in 0.5 M H_2SO_4 and 0.5 M HCl for cobalt corrosion. ΔG°_{ads} , kJ/mol

			$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}$	D_4				0.5 M HC	1	
	Slope	Interc.	R^2	Kads	ΔG^{o}_{ads} ,	Slope	Interc.	\mathbb{R}^2	\mathbf{K}_{ads}	ΔG^{o}_{ads} ,
Cys	1.09	9.76×10 ⁻⁶	0.999	1.12×10^{7}	-50.2	1.20	6.04×10 ⁻⁶	0.999	1.99×10^{6}	-40.2
Met	1.09	3.2×10^{-5}	0.999	3.41×10^{5}	-41.5	1.37	1.33×10^{-4}	0.999	1.03×10^{4}	-32.8
His	1.52	2.33×10 ⁻⁴	0.995	6.48×10 ³	-31.7	1.19	5.15×10 ⁻⁵	0.999	2.31×10 ⁴	-34.8

것이다. 반면에 환원영역에서는 Co-표면(δ-)에 iminium ion (-NH⁺=)의 양전하 사이에 물리흡착이 일어날 것으로 보인다.

HCl 용액의 경우 환원영역에서는 H₂SO₄ 용액의 경우와 비슷한 흡착 현상이 일어나지만 산화영역에서는 Co-표면 에 Cl⁻가 먼저 흡착되어 {Co-Cl^{-δ}}와 같은 표면상태를 유 지할 것이다. His, (ImH⁺)CH(NH³⁺)(COOH)의 pK_a는 1.6 (-COOH의 H), 5.97(치환기 imidazole 고리에 있는 iminium 이온(-NH⁺=)의 H), 9.28(-NH₃⁺의 H) 이다.²² 따라서 His 분 자에 있는 -NH₃⁺, -NH⁺=의 양전하와 전극표면 {Co-Cl^{-δ}} 의 음전하 사이에 정전기적 인력에 의해 강한 물리흡착이 일어날 것으로 보인다.

결 론

0.5 M HCl과 0.5 M H₂SO₄ 용액에 녹아 있는 아미노산 (cysteine, methionine, histidine)은 Co-전극의 표면에서 일 어나는 산화 또는 환원반응을 억제함으로써 Co의 부식을 억제하였다.

Cysteine과 methionine은 H₂SO₄ 용액에서 더 좋은 부식 억제 효율을 보였으나, histidine은 HCl 용액에서 부식억제 효 율이 더 높았다. 이는 H₂SO₄ 용액에서는 Cysteine과 methionine 분자에 있는 {-S-}의 고립 전자쌍이 Co의 빈 d-orbital과 배 위되어 화학흡착이 잘 일어나기 때문인 것으로 보인다. 따라서 전해질의 선택흡착이 없는 것으로 보이는 H₂SO₄ 용액에서는 표준 흡착자유에너지가 -50.2 kJ/mol과 -41.5 kJ/mol 이었으나, Cl⁻가 선택흡착 되는 HCl 용액에서는 cysteine과 methionine에 있는 {-S-}의 고립 전자쌍의 화학 흡착이 방해 받기 때문에 표준 흡착자유에너지 값이 -40.2 kJ/mol과 -32.8 kJ/mol로 양의 방향으로 이동하였다. Cl⁻에 의해 선택흡착이 일어날 경우 cysteine과 methionine의 구 조 차이에서 올 수 있는 입체효과도 관측되었다.

Histidine은 분자의 {-NH₃⁺}와 {-NH⁺=}는 고립 전자쌍이 없고 양의 전하를 갖기 때문에 화학흡착 보다는 정전기적 인력으로 인한 물리흡착이 일어나며, carbonyl group (-C=O) 의 O 원자에 있는 고립 전자쌍이 약한 화학흡착을 일으킬 수 있지만 인접한 {-NH₃⁺}와 Co-표면의 {-&} 전하 사이의 인 력은 화학흡착을 더욱 약하게 만드는 것으로 관찰되었다.

Acknowledgments. 본 연구는 2019년도 한국외국어대 학교 학술조성연구비로 이루어졌습니다.

REFERENCES

- 1. Metikoš-Huković, M.; Babić, R. Corros. Sci. 2007, 49, 3570.
- Davis, J. R. Nickel, Cobalt, and Their Alloys; ASM International: Materials Park, OH, 2000; p 442.
- Koch, G. H.; Brongers, M. P. H.; Thomson, N. G.; Virmani, Y. P.; Payer, J. H. Corrosion Cost and Preventive Strategies in the United States (Report No. FHWA-RD-01-156); CC Technologies Laboratories, Inc.,/NACE International: Doublin, OH/Houston, TX, 2001; p 773.
- 4. Osaka, T. Electrochim. Acta 2000, 45, 3311
- 5. Contu. F.; Elsener, B.; Böhni, H. Corros. Sci. 2005, 47, 1863.
- Pontinha, M.; Faty, S.; Walls, M. G.; Ferreira, M. G. S.; Da Cunha Belo, M. *Corros. Sci.* 2006, 48, 2971.
- 7. Gallant, D.; Simard, S. Corros. Sci. 2005, 47, 1810.
- Gallant, D.; Pézolet, M.; Jacques, A.; Simard, S. Corros. Sci. 2006, 48, 2547.
- Gallant, D.; Pézolet, M.; Simard, S. *Electrochim. Acta* 2007, 52, 4927.
- 10. Kim, Y.; Chon, J.-K. J. Korean Chem. Soc. 2007, 51, 479.
- Real, S. G; Ribotta, S. B.; Arvia, A. J. Corros. Sci. 2008, 50, 463.
- Calderón, J. A.; Barcia, O. E.; Mattos, O. R. Corros. Sci. 2008, 50, 2101.
- 13. Cuesta, A.; Gutiérrez, C. Langmuir 1998, 14, 3390.
- Devillers, S.; Hennart, A.; Delhalle, J.; Mekhalif, Z. *Langmuir* 2011, 27, 14849.
- Hoertz, P. G; Niskala, J. R.; Dai, P.; Black, H. T.; You, W. J. Am. Chem. Soc. 2008, 130, 9763.
- Huo, S.; Zhu, Q.; Chu, C.-S.; Fang, J.-H. J. Phys. Chem. C 2012, 116, 20269.
- Zaferani, S. H.; Sharifi, M.; Zaarei, D.; Shishesaz, M. R. J. Environ. Chem. Eng. 2013, 1, 652.
- Saifi, H.; Bernard, M. C.; Joiret, S.; Rahmouni, K.; Takenouti, H.; Talhi, B. *Mat. Chem. Phys.* 2010, *120*, 661.
- Bobina, M.; Kellenberger, A.; Millet, J.-P.; Muntean, C.; Vaszilcsin, N. Corros Sci. 2013, 69, 389.
- 20. Kim, Y. J. Korean Chem. Soc. 2014, 58, 437.

- 21. Chon, J.-K.; Kim, Y. J. Korean Chem. Soc. 2007, 51, 14.
- 22. Harris, D. C. *Quantitative Chemical Analysis*, 7th ed.; Freeman & Co.: New York, 2007; p 182.
- Damaskin, B. B.; Petrii, O. A.; Batrakov, V. V. Adsorption of Organic Compounds on Electrodes; Uvarov, E. B., Ed.; Plenum Press: New York, 1971; p 86.
- Bastidas, J. M.; Pinilla, P.; Cano, E.; Polo, J. L.; Miguel, S. Corros. Sci. 2003, 45, 427.
- Oguzie, E. E.; Li, Y.; Wang, F. H. J. Colloid Interface Sci. 2007, 310, 90.
- 26. Atkins, P. W. *Physical Chemistry*, 4th ed.; Oxford University Press: Oxford, 1993; p 885.
- 27. Badawy, W. A.; Ismail, K. M.; Fathi, A. M. *Electrochim. Acta* **2006**, *51*, 4182.
- 28. Ismail, K. M. Electrochim. Acta 2007, 52, 7811.
- 29. Chon, J.-K.; Kim, Y. J. Korean Chem. Soc. 2008, 52, 434.
- 30. Chon, J.-K.; Kim, Y. J. Korean Electrochem. Soc. 2009, 12, 311.
- 31. Kim, Y. J. Korean Chem. Soc. 2015, 59, 125.