• Title/Summary/Keyword: corrosion time

Search Result 1,179, Processing Time 0.027 seconds

Growth Behavior and Corrosion Damage of Oxide Film According to Anodizing Time of Aluminum 1050 Alloy (알루미늄 1050 합금의 양극산화 시간에 따른 산화피막 성장 거동 및 부식 손상 연구)

  • Choi, Yeji;Jeong, Chanyoung
    • Corrosion Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.282-289
    • /
    • 2022
  • Aluminum 1000 series alloy, a pure aluminum with excellent workability and weldability, is mainly used in the ship field. Aluminum alloy can combine with oxygen in the atmosphere and form a natural oxide film with high corrosion resistance. However, its corrosion resistance and durability are decreased when it is exposed to a harsh environment for a long period of time. For solving this problem, a porous oxide film can be formed on the surface using an anodizing treatment method, a typical surface technique among various methods. In this study, aluminum 1050 alloy was anodized for 2 minutes, 6 minutes, and 10 minutes. The structure and shape of the oxide film were then analyzed to determine the corrosion resistance according to the thickness of the oxide film that changed depending on working condition using 15 wt% NaCl. After it was immersed in NaCl solution for 1, 5, and 10 days, corrosion damage was observed. Results confirmed that the thickness of the oxide film increased as the anodization time became longer. The depth of surface damage due to corrosion became deeper when the film was immersed in the 15 wt% NaCl solution for a longer period of time.

Buckling capacity of uniformly corroded steel members in terms of exposure time

  • Rahgozar, Reza;Sharifi, Yasser;Malekinejad, Mohsen
    • Steel and Composite Structures
    • /
    • v.10 no.6
    • /
    • pp.475-487
    • /
    • 2010
  • Most of steel structures in various industries are subjected to corrosion due to environmental exposure. Corrosion damage is a serious problem for these structures which may reduce their carrying capacity. These aging structures require maintenance and in many cases, replacement. The goal of this research is to consider the effects of corrosion by developing a model that estimates corrosion loss as a function of exposure time. The model is formulated based on average measured thickness data collected from three severely corroded I-beams (nearly 30 years old). Since corrosion is a time-dependent parameter. Analyses were performed to calculate the lateral buckling capacity of steel beam in terms of exposure time. Minimum curves have been developed for assessment of the remaining lateral buckling capacity of ordinary I-beams based on the loss of thicknesses in terms of exposure time. These minimum curves can be used by practicing engineers for better estimates on the service life of corrosion damaged steel beams.

Corrosion Cost and Corrosion Map of Korea - Based on the Data from 2005 to 2010

  • Kim, Y.S.;Lim, H.K.;Kim, J.J.;Hwang, W.S.;Park, Y.S.
    • Corrosion Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.52-59
    • /
    • 2011
  • Corrosion of metallic materials occurs by the reaction with corrosive environment such as atmosphere, marine, soil, urban, high temperature etc. In general, reduction of thickness and cracking and degradation are resulted from corrosion. Corrosion in all industrial facilities and infrastructure causes large economic losses as well as a large number of accidents. Economic loss by corrosion has been reported to be nearly 1-6% of GNP or GDP. In order to reduce corrosion damage of industrial facilities, corrosion map as well as a systematic investigation of the loss of corrosion in each industrial sector is needed. The Corrosion Science Society of Korea in collaboration with 15 universities and institutes has started to survey on the cost of corrosion and corrosion map of Korea since 2005. This work presents the results of the survey on cost of corrosion by Uhlig, Hoar, and input-output methods, and the evaluation of atmospheric corrosion rate of carbon steel, weathering steel, galvanized steel, copper, and aluminum in Korea. The total corrosion cost was estimated in terms of the percentage of the GDP of industry sectors and the total GDP of Korea. According to the result of Input/output method, corrosion cost of Korea was calculated as 2.9% to GDP (2005). Time of wetness was shown to be categories 3 to 4 in all exposure areas. A definite seasonal difference was observed in Korea. In summer and fall, time of wetness was higher than in other seasons. Because of short exposure period (12 months), significant corrosion trends depending upon materials and exposure corrosion environments were not revealed even though increased mass loss and decreased corrosion rate by exposure time.

Prediction of tensile strength degradation of corroded steel based on in-situ pitting evolution

  • Yun Zhao;Qi Guo;Zizhong Zhao;Xian Wu;Ying Xing
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.385-401
    • /
    • 2023
  • Steel is becoming increasingly popular due to its high strength, excellent ductility, great assembly performance, and recyclability. In reality, steel structures serving for a long time in atmospheric, industrial, and marine environments inevitably suffer from corrosion, which significantly decreases the durability and the service life with the exposure time. For the mechanical properties of corroded steel, experimental studies are mainly conducted. The existing numerical analyses only evaluate the mechanical properties based on corroded morphology at the isolated time-in-point, ignoring that this morphology varies continuously with corrosion time. To solve this problem, the relationships between pit depth expectation, standard deviation, and corrosion time are initially constructed based on a large amount of wet-dry cyclic accelerated test data. Successively, based on that, an in-situ pitting evolution method for evaluating the residual tensile strength of corroded steel is proposed. To verify the method, 20 repeated simulations of mass loss rates and mechanical properties are adopted against the test results. Then, numerical analyses are conducted on 135 models of corrosion pits with different aspect ratios and uneven corrosion degree on two corroded surfaces. Results show that the power function with exponents of 1.483 and 1.091 can well describe the increase in pit depth expectation and standard deviation with corrosion time, respectively. The effect of the commonly used pit aspect ratios of 0.10-0.25 on yield strength and ultimate strength is negligible. Besides, pit number ratio α equating to 0.6 is the critical value for the strength degradation. When α is less than 0.6, the pit number increases with α, accelerating the degradation of strength. Otherwise, the strength degradation is weakened. In addition, a power function model is adopted to characterize the degradation of yield strength and ultimate strength with corrosion time, which is revised by initial steel plate thickness.

An advanced technique to predict time-dependent corrosion damage of onshore, offshore, nearshore and ship structures: Part II = Application to the ship's ballast tank

  • Kim, Do Kyun;Lim, Hui Ling;Cho, Nak-Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.645-656
    • /
    • 2020
  • In this study (Part II), the empirical formulation of corrosion model of a ship's ballast tank was developed to predict nonlinear time-dependent corrosion wastage based on the advanced data processing technique proposed by Part I. The detail on how to propose generalised mathematical formulation of corrosion model was precisely documented in the previous paper (Part I). The statistical scatter of corrosion data at any exposure time was investigated by the refined method and formulated based on a 2-parameter Weibull distribution which selected the best fit PDF. Throughout the nine (9) steps, empirical formulation of the ship's seawater ballast tank was successfully proposed and four (4) key step results were also obtained. The proposed method in Part I was verified and confirmed by this application of seawater ballast tank, thus making it possible to predict accurate behaviours of nonlinear timedependent corrosion. Developed procedures and obtained corrosion damage model for ship's seawater ballast tank can be used for development of engineering software.

The Capacity of Applying Electrical Resistance Probe in Natural Corrosion Tests of Vietnam

  • Pham, Thy San;Le, Thi Hong Lien;Le, Quoc Hung
    • Corrosion Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.98-101
    • /
    • 2003
  • The Electrical Resistance Probe of carbon steel and weight loss coupons were exposed in atmosphere and in the lake water of Hanoi. The comparison of data received by two methods after one year exposure was presented. The correspondence of the data of these methods on the exposure time in both environments showed a capacity of using Electrical Resistance Probe in Vietnamese natural corrosion testing of Carbon steel.

A Study on the Prediction of Durability of Concrete Structures Subjected to Chloride Attack by Chloride Diffusion Model (염소이온의 확산모델에 의한 염해를 받는 콘크리트 구조물의 내구성 예측연구)

  • 오병환;장승엽;차수원;이명규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.254-260
    • /
    • 1997
  • Chloride-induced corrosion of reinforcement is one of the main factors which cause the deterioration of concrete structures. Durability and service lives of the concrete sturctures should be predicted in order to minimize the risk of corrosion of reinforcement. The objective of this study is to suggest the basis of analytical methods of predicting the corrosion threhold time of concrete structures. Based on the chemistry and physics of chloride ion transport and corrosion process, chloride intrusion with various exposure conditions, variability of diffusivity and transport of pore water in concrete are taken into consideration in applying finite element formulation to the predicion of corrosion threhold time. The effects of main factors on the prediction of chloride intrusion and corrosion threhold time are examined. In addition, after chloride diffusivities of several mixture proportions with different parameters are measured by chloride diffusion test, the exemplary anayses of corrosion threhold time of those mixture proportions are carried out.

  • PDF

Development of Integrated Corrosion Monitoring and Control System (통합 부식 모니터링 및 통합 제어 시스템의 개발)

  • Yoo, Nam-Hyun;Kim, Young-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.8-14
    • /
    • 2013
  • Although there are various factors that threaten the security of ships, one of the most harmful is corrosion. It is not easy to find corroding areas and the status of corrosion, even though corrosion causes serious problems such as submergence and marine pollution as a result of leaking oil and polluted water. To monitor the corrosion of ships, non-destructive inspection, weight loss coupons, electrical resistance, linear polarization resistance, zero resistance ammeter, and electrochemical impedance spectroscopy have been developed. However, these methods require much time to detect corrosion, and most are not appropriate for real time monitoring. Coating, sacrificial anode, and impressed current cathodic protection (ICCP) methods have been developed to control corrosion. The ICCP and sacrificial anode methods are the most popular ways to prevent ship corrosion. However, ICCP is only appropriate for the outside of a ship and cannot be used for complex structures such as ballast tanks because these are composed of many separate chambers. Sacrificial anodes have to be replaced periodically. This paper proposes an integrated corrosion monitoring and control system (ICMCS) that can detect corrosion in real time and is appropriate for complex structures such as ballast tanks. Because the system uses titanium for an anode, exhausted anodes do not need to be replaced.

C-Ring Stress Corrosion Test for Inconel 600 Tube and Inconel 690 welded by Nd:YAG Laser (Nd:YAG 레이저로 용접한 인코넬 600관과 인코넬 690의 C링 응력 부식시험)

  • 김재도;문주홍;정진만;김철중
    • Proceedings of the KWS Conference
    • /
    • 1998.10a
    • /
    • pp.288-291
    • /
    • 1998
  • Inconel 600 alloy is used as the material of nuclear steam generator tubing because of its mechanical properties, formability, and corrosion properties. According to reports, the life time of nuclear power plants decreases because of the pitting, intergranular attack, primary water stress corrosion cracking(PWSCC), and intergranular stress corrosion cracking(IGSCC), and denting in the steam generator. The SCC test is very important because of SCC appears in various environment such as solutions, materials, and stress. The C-Rig specimen was made of the steam generator welded sleeve repairing by the pulsed Nd:YAG laser. In the corrosion invironment, corrosion solutions are Primary Water, Caustic, and Sulfate solution and corrosion time is 1624-4877hr. The permitted stress is 30-60ksi.In this C-Ring SCC test is the relationship between corrosion depth, crack and corrosion environment is evaluated. SCC was happens in Sulfate and Corrosion solution but doesn't happen in Primary Water. The corrosion time and stress is very affected by the severely environment of Sulfate or Caustic solution. The microstructure observation indicates that SCC causes interganular failure in the grain boundary of vertical direction.

  • PDF

Corrosion initiation time models in RC coastal structures based on reliability approach

  • Djeddi, Lamine;Amirat, Abdelaziz
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.149-159
    • /
    • 2020
  • The present work proposes new engineering models for determining corrosion initiation time in concrete reinforcing steels in marine environment. The models are based on Fick's second law that is commonly used for chloride diffusion. The latter is based on deterministic analyses involving the most influencing parameters such as distance of the concrete structure from the seaside, depth of steel concrete cover, ambient temperature, relative humidity and the water-cement ratio. However, a realistic corrosion initiation time cannot be estimated because of the uncertainties associated to the different parameters of the models. Therefore a reliability approach using FORM/SORM method has been applied to develop the proposed engineering models integrating a limit state function and a reliability index β. As a result, the corrosion initiation time is expressed by new exponential engineering models where the uncertainties are associated to the model parameters. The main emerging result is a realistic decision tool for corrosion planning inspection.