• Title/Summary/Keyword: corrosion of reinforcing bar

Search Result 94, Processing Time 0.023 seconds

Study on the Repair Method of R/C Structures(III) (철근콘크리트 구조물의 보수공법 연구(III) -정.동적 휨특성 연구-)

  • 심종성;홍영균;황의승;배인환;이은호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.225-230
    • /
    • 1995
  • Concrete structures need repair and rehabilitation due to functional deficiencies such as cracks, scaling and spalling. Loss of section such as spalling is caused by corrosion of reinforcing bar, fire, temperature change, poor design and etc. This study aims to examine the characteristics of polymer(epoxy)and polymer-cement(latex) for repair materials and to provide the proper repair scheme through static and fatigue tests. Totally 12 beams were tested. Results from static and fatigue tests of beams repaired with polymer and polymer-cement were compared.

  • PDF

A Study on Repair Method of Concrete Structures using the Solution of Removing Chloride (염분제거용 약액을 이용한 콘크리트 구조물의 보수공법에 관한 연구)

  • Kim, Woonhak;Hwang, Sungwoon;Kang, Seokwon
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.4
    • /
    • pp.562-569
    • /
    • 2017
  • Reinforced concrete is used for bridges and large structures that are constructed with social overhead capital because they are economically and semi-permanently integrated with reinforcing bar and concrete. However, when the chloride ion in the concrete destroys the passive film of the reinforcing bar by the marine exposure environment and the snow remover used in the winter season, and the reinforcing bar is corroded by various chemical and physical actions, the durability is deteriorated in a short period, and the life span is shortened. In this study, a repair method to recover the durability of the initial structure by effectively removing chloride ion from the damage caused by salting of the above mentioned reinforced concrete was conducted.

Properties of Adhesion Tension of Polymer Cement Slurry for Coated Reinforcing Bar (철근 도장용 폴리머 시멘트 슬러리의 부착 특성)

  • 김현기;이철웅;장성주;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.343-348
    • /
    • 2000
  • The purpose of this study is to clarify properties adhesive strength of polymer-cement slurry for coated reinforcing bars. The epoxy coating material is superior to performance of anti-corrosion but lately age adhesive strength between concrete raise to structural problems. However, polymer dispersion with excellent performance of elasticity and adhesion can solve this problems. From the test results. adhesion of steel with polymer cement slurry using St/BA emulsion is show excellent without concerned coating thickness, and polymer cement slurry using St/BA emulsion is show adhesion in tension 1.2~2.2MPa at polymer cement ratio 50% of more.

  • PDF

A Comprehensive Analysis of the Influence of Oxygen Diffusion on Concrete Cracks Triggered by Reinforcement Corrosion (철근 부식으로 인한 콘크리트 균열발생에 산소확산성의 영향에 대한 해석적 연구)

  • Nam, Min-Seok;Park, Dong-Cheon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.2
    • /
    • pp.123-131
    • /
    • 2023
  • In this study, the analysis of concrete cracks was conducted with a total of three variables: coating thickness, oxygen diffusion rate, and reinforced diameter of reinforced concrete structures. Cracks occurred after about 3, 4, and 6 years at the coating thickness of 30, 40, and 50mm when the coating thickness was used as a variable, and cracks occurred after about 4, 5, and 10 years at oxygen diffusivity of 2e-9, 2e-11, and 2e-12(m2/s) when the oxygen diffusion rate was used as a variable. In the case of reinforcing bar diameters, cracks occurred after about 4, 3, and 2 years on the reinforcing bar diameters of D10, D19, and D25.

Flexural Behavior of Bridge Deck Concrete Reinforced with FRP Box and Plate (FRP Box와 판으로 보강된 교량 바닥판 콘크리트의 휨거동)

  • Nam J. H.;Jeong S. K.;Yoon S. J.;Kim B. S.;Cho K. H.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.13-17
    • /
    • 2004
  • In recent years, the deterioration of reinforced concrete structures has become a serious problem in civil engineering fields. This situation is mainly due to corrosion of steel reinforcing bars embedded in concrete. Recently, there has been a greatly increased demand for the use of FRP (fiber reinforced plastic) in civil engineering field due to their superior mechanical and physical properties. This paper presents an experimental study on the behavior of concrete bridge deck reinforced with FRP Box, FRP Plate, and FRP Re-bar. In tlIe study, mechanical properties of FRP Box, FRP Plate, GFRP Re-bar, and CFRP Grid have been investigated. Full scale one-way deck slab was tested under four point lateral load (equivalent to actual wheel load of DB-24 including impact). Load-deflection and load-strain data were collected through LVDT's and strain gages attached to the specimen.

  • PDF

Investigation of Durability of Electric Power Concrete Structures Exposed to Reclaimed Marine Land (해안매립지에 위치한 전력구 콘크리트 구조물의 내구성 조사)

  • Kim, Seong-Soo;Park, Kwang-Pil;Nam, Ba-Reum;Yoo, Ju-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.597-600
    • /
    • 2006
  • In Marine Land underground reinforced concrete structures, such as electric box power structure, water and chloride ion penetrated into concrete through the cracks of concrete and its permeable property, cause the corrosion of reinforcing steel bar, which accelerates the expansive cracks and deterioration of concrete. The purpose of this paper is to evaluate on deterioration of durability concrete through instrumental analysis such as schmidt hammer and carbonation, chloride content. Under the reclaimed marine land, the main cause of deterioration of concrete structures is the steel corrosion due to the penetration of chlorides and the deterioration of outer concrete itself by chemical attack.

  • PDF

Concrete Shear Strength of Light Weight Concrete Beams Reinforced with GFRP bar (GFRP bar 경량콘크리트 보의 콘크리트 전단강도)

  • Jin, Min-Ho;Jang, Hee-Suk;Kim, Chung-Ho;Baek, Dong-Il
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.177-180
    • /
    • 2008
  • Recently, the research of FRP bar as an alternative reinforcing material in reinforced concrete structures has increased to get an innovative solution to the corrosion problem. In addition to the noncorrosive nature of FRP materials, they also have a high strength-to-weight ratio. Therefore, when light weight concrete reinforced with FRP bar is used in marine environment, for instance floating structures, some advantages can be expected. But researches for the light weight concrete structure using FRP bar as a flexural reinforcement are limited to date. In this paper, the concrete shear contribution of the light weight concrete beam reinforced with GFRP bar was studied. Experiment for beams varying concrete compressive strengths and flexural reinforcement ratios was conducted and analysed. The test results showed that 75% of values obtained from proposed equation in preceding research were well agreed with the test results and were better results than the one predicted by the ACI 440.1R-06 code.

  • PDF

Flexural Behaviors of GFRP Rebars Reinforced Concrete Beam under Accelerated Aging Environments (GFRP Rebar 보강 콘크리트 보의 급속노화환경에서의 휨 거동에 관한 연구)

  • Park, Yeon-Ho;Choi, Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.137-144
    • /
    • 2013
  • The use of fiber-reinforced polymer (FRP) reinforcing bars in concrete structures has been increased as an alternative of steel reinforcement which has shown greater vulnerability to corrosion problem. However, the long-term performance of concrete members with FRP reinforcement is still questioned in comparison to the used of steel reinforcement. This study presents the results of an experimental study on the long-term behaviors of GFRP (glass fiber reinforced polymer) bar reinforced concrete beams after exposed to accelerated aging in an environmental chamber with temperature of $46^{\circ}C$ ($115^{\circ}F$) and 80% of relative humidity up to 300 days. The objectives of this research was to compare strength degradation and change of ductility between GFRP reinforced concrete beams and steel reinforcement beams after accelerated aging. Two types (wrapped and sand-coated surface) of GFRP bars and steel were reinforced. in concrete beams. Test results show that the failure modes of GFRP bar reinforced concrete beams are very similar with traditional RC beams, and the change of load-carrying capacity of steel reinforcing concrete beam is greater than that of GFRP bar reinforcing concrete beam under the accelerated aging. Test result also shows that the use of GFRP reinforcing in concrete could be introduced more brittle failure than that of steel reinforcing for practical application. The deformability factor up to compression failures indicates no significant variation before and after exposure of accelerated aging.

Conservation of Seated Iron Śākyamuni Buddha Statue from Goryeo Dynasty (고려(高麗) 철제석가여래좌상(鐵製釋迦如來坐像)의 보존)

  • Huh, Ilkwon;Yoo, Jayoung
    • Conservation Science in Museum
    • /
    • v.11
    • /
    • pp.9-16
    • /
    • 2010
  • The National Chuncheon Museum has carried out a conservation process in order to prevent corrosion of the seated iron Śākyamuni Buddha statue from Goreyo Dysnasty for its exhibition. Before the conservation process, the surface of the artifact showed exfoliation and the artifact was damaged from rear to legs so exhibition was impossible. Therefore a process to get rid of pollution and to reinforce and protect the artifact was carried out. Before the reinforcing process, a basic test was carried out using micro crystalline wax type with reference to foreign and domestic experiment results. As a result, as wax(in xylene) 5wt% of Dongnam petrochemical Ltd. showed no efflorescence and little change in surface color and was convenient to use, it was chosen as a reinforcing agent and used to suppress corrosion. For the restoration of damaged parts, an internal support was made and used with an epoxy resin, allowing removable restoration, thus increasing effectiveness for exhibition.

Effects of alkali solutions on corrosion durability of geopolymer concrete

  • Shaikh, Faiz U.A.
    • Advances in concrete construction
    • /
    • v.2 no.2
    • /
    • pp.109-123
    • /
    • 2014
  • This paper presents chloride induced corrosion durability of reinforcing steel in geopolymer concretes containing different contents of sodium silicate ($Na_2SiO_3$) and molarities of NaOH solutions. Seven series of mixes are considered in this study. The first series is ordinary Portland cement (OPC) concrete and is considered as the control mix. The rest six series are geopolymer concretes containing 14 and 16 molar NaOH and $Na_2SiO_3$ to NaOH ratios of 2.5, 3.0 and 3.5. In each series three lollypop specimens of 100 mm in diameter and 200 mm in length, each having one 12 mm diameter steel bar are considered for chloride induced corrosion study. The specimens are subjected to cyclic wetting and drying regime for two months. In wet cycle the specimens are immersed in water containing 3.5% (by wt.) NaCl salt for 4 days, while in dry cycle the specimens are placed in open air for three days. The corrosion activity is monitored by measuring the copper/copper sulphate ($Cu/CuSO_4$) half-cell potential according to ASTM C-876. The chloride penetration depth and sorptivity of all seven concretes are also measured. Results show that the geopolymer concretes exhibited better corrosion resistance than OPC concrete. The higher the amount of $Na_2SiO_3$ and higher the concentration of NaOH solutions the better the corrosion resistance of geopolymer concrete is. Similar behaviour is also observed in sorptivity and chloride penetration depth measurements. Generally, the geopolymer concretes exhibited lower sorptivity and chloride penetration depth than that of OPC concrete. Correlation between the sorptivity and the chloride penetration of geopolymer concretes is established. Correlations are also established between 28 days compressive strength and sorptivity and between 28 days compressive strength and chloride penetration of geopolymer concretes.