• Title/Summary/Keyword: corrosion fatigue fracture

Search Result 90, Processing Time 0.03 seconds

An Experimental Study on the Fatigue Fracture Behavior of Ion-Nitrided SM45C (이온질화 처리한 SM45C의 피로파괴거동에 관한 실험적 연구)

  • Sang-Chul,Kim;Chang-Gi,Woo;Dong-Myeong,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.2
    • /
    • pp.47-54
    • /
    • 1990
  • In this study, the effects of gas ratio($N_2:H_2$) and treatment time on the fatigue fracture behavior, fatigue crack growth behavior and corrosion fatigue fracture behavior for the ion-nitrided SM45C steel were investigated. The results show that the fatigue limit and corrosion fatigue strength increased in porportion to $N_2$ gas and treatment time for all kinds of specimen, used in the experiment. Compare to the non-nitrided specimen, the fatigue limit and the corrosion fatigue strength increased about $24{\sim}29%$ at $10^7$ cycles in air and $32{\sim}48%$ at $10^6$ cycles in 3% NaCl aqueous solution, respectively. Similar results were derived with SM45C steel under Compression-Tension $24{\sim}29%$ at $10^6$ cycles in air and $32{\sim}48%$ either in 3% NaCl aqueous solution or in tap water, respectively. Ion-nitrided SM45C steel showed a slow fatigue crack growth rate at relatively low range of ${\Delta}K$ compared to the non-nitrided specimen. To the contrary, its rate increase at higher range of ${\Delta}K$.

  • PDF

A Study on Corrosion Fatigue Crack Growth Behavior in Al-Alloy 7075-T651 (I) (Al-Alloy 7075-T651의 부식피로균열 성장거동에 관한 연구(I))

  • 김봉철;한지원;우흥식
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.113-120
    • /
    • 1998
  • Fatigue crack growth rates(i.e. crack initiation and crack growth of short and long crack) are investigated using commercial plates of high strength Al alloy 7075-T651 for the transverse-longitudinal(T-L) direction in air, water and sea water. Also, the evaluation direct current potential drop(D.C.P.D) method and the fractographical analysis by SEM are carried out. Near threshold region, short crack growth rates were much faster than those of comparable long cracks, and these short crack growth rates actually decrease with increasing crack growth and eventually merge with long crack data. Fatigue crack propagation rates in aggressive media(i.e. sea water) increase noticeably over three times those in air. One of the most significant characters in this phenomenon as a corrosion-fatigue causes an acceleration in crack growth rates. Sea water environment, particularly Cl$^{[-10]}$ solution brings the most detrimental effects to aluminum alloy. The result of fractographical morphology in air, water and sea water by SEM shows obvious dimpled rupture and typical striation in air, but transgranular fracture surface in water and sea water.

  • PDF

The study on corrosion fatigue and cathodic protection of the steel plates used for the shipbuilding (조선용강재의 부식피로와 전기방식에 관한 연구)

  • 전대희;김원녕;이의호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.126-142
    • /
    • 1985
  • The plane bending corrosiion fatigue test for the welded metal parats was performed in the air and in the natural sea water with and without applying cathodic protection. The specimens tested were the weld of SM41 steel plates, SM58 steel plates and of SM41 to SM58, which were all prepared by submerged arc welding. The main results obtained from the experiment are summarized as follows: (1) In case with SM41 and SM58 steel plates, lower value of impact strength, higher value of hardness and more noble electrode potential were observed in the welded metal part than in the HAZ and base metal. Also the lowest hardness zone in the HAZ was observed with SM58 which was not found with SM41. In case with weld specimen of SM41 to SM58, the impact strength and the electrode potential of the welded metal part showed again the lowest and most noble value but the hardness value was located between those of SM41 and SM58 base metal. (2) In the fatigue test, the specimens tested in the air and under the cathodic protection were both cracked in a purely mechanical mode, but the specimens tested without cathodic protection were cracked by the combination of mechanical fracture and electro-chemical corrosion. (3) The corrosion fatigue limit of the welded metal parts of the specimen was increased by the cathodic protection. As the protection potential was varied down to -800 mV vs. SCE the fatigue limit was increased to the value tested in the air, and the maximum fatigue limit appeared at the -1, 000 - -1, 200 mV vs. SCE. However, as the protection potential was further decreased below -1, 200 mV vs.SCE, the fatigue limit of weld of SM58 and of SM41-SM58 joining was decreased but the limit was almost constant in the case of weld of SM41. (4) It is suggested that when designing steel ship the corrosion fatigue limit of welded metal parts should be stressed as a designing strength of the structure of steel ship in addition to the conventional basis considering simply tensile strength of steel and safety factor.

  • PDF

Failure Analysis of SCM435 Bolt for Fixing Automotive Air Brake Spring (자동차 에어 브레이크 스프링 고정용 SCM435 볼트의 파손 해석)

  • Yun, Seo-Hyun;Kim, Min-Heon;Nam, Ki-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.73-81
    • /
    • 2020
  • This study analyzed the causes of failure of SCM435 bolts that fix the springs of automobile air brakes that have been fractured during use. The cause of failure was analyzed using SEM, EDS, metallogical microscope and Vickers hardness tester. In the fracture, the ratchet mark began at the outer boundary of crack origin, and the grains at crack origin were found to have clear intergranular corrosion. One SCM435 bolt was subjected to a stress of 398 MPa, it's a stress of about 80% of the fatigue limit. As a result of such a large applied stress, cracks occurred at the corrosion origin and were fractured. In order to prevent the SCM435 bolt from fracture, it is necessary to use the correct composition, the accuracy of heat treatment, preventing damage by external impact, preventing corrosion of the damage part by moisture, and introduction a compressive residual stress by peening.

Local Corrosion and Fatigue Damages of Steel Plates at the Boundary with Concrete (콘크리트에 접해있는 강재의 국부부식과 피로손상)

  • Kim, In Tae;Kainmua, Shigenobu;Cheung, Jin Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.313-321
    • /
    • 2008
  • Recently in Japan, fracturing was observed on the diagonal member of a through truss bridge at the boundary region with the concrete slab. Local corrosion damage where the diagonal member was enclosed in the concrete slab is an important factor in the fracture. In this study, accelerated exposure tests were carried out on concrete-steel model specimens simulating steel members at the boundary with concrete. Fatigue tests were then performed on the corroded model specimens. Accelerated exposure tests of the S6-cycle, which is carried out on the model specimens for 150, 300, 450 and 600 da ys. Their surface geometry was then measured. From the accelerated exposure test results, change in maximum and mean corrosion depths was determined according to the testing periods. The effect of local corrosion on fatigue strength was also presented based on the fatigue test results.

Prediction of stress intensity factor range for API 5L grade X65 steel by using GPR and MPMR

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Saravanan, M.;Gandhi, P.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.565-574
    • /
    • 2022
  • The infrastructures such as offshore, bridges, power plant, oil and gas piping and aircraft operate in a harsh environment during their service life. Structural integrity of engineering components used in these industries is paramount for the reliability and economics of operation. Two regression models based on the concept of Gaussian process regression (GPR) and Minimax probability machine regression (MPMR) were developed to predict stress intensity factor range (𝚫K). Both GPR and MPMR are in the frame work of probability distribution. Models were developed by using the fatigue crack growth data in MATLAB by appropriately modifying the tools. Fatigue crack growth experiments were carried out on Eccentrically-loaded Single Edge notch Tension (ESE(T)) specimens made of API 5L X65 Grade steel in inert and corrosive environments (2.0% and 3.5% NaCl). The experiments were carried out under constant amplitude cyclic loading with a stress ratio of 0.1 and 5.0 Hz frequency (inert environment), 0.5 Hz frequency (corrosive environment). Crack growth rate (da/dN) and stress intensity factor range (𝚫K) values were evaluated at incremental values of loading cycle and crack length. About 70 to 75% of the data has been used for training and the remaining for validation of the models. It is observed that the predicted SIF range is in good agreement with the corresponding experimental observations. Further, the performance of the models was assessed with several statistical parameters, namely, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Efficiency (E), Root Mean Square Error to Observation's Standard Deviation Ratio (RSR), Normalized Mean Bias Error (NMBE), Performance Index (ρ) and Variance Account Factor (VAF).

Reviews on Very High Cycle Fatigue Behaviors of Structural Metals (구조용 금속의 초고주기피로 거동에 대한 연구 동향)

  • Han, Seung-Wook;Park, Jung-Hoon;Myeong, No-Jun;Choi, Nak-Sam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.134-140
    • /
    • 2014
  • The paper presents an overview of the present state of study on the fatigue behaviors at very high number of cycles ($N_f$ > $10^7$). A classification of materials with typical S-N curves and influencing factors such as notches, residual stresses, temperatures, corrosion environments and stress ratios are given. The microstructural inhomogeneities of materials and micro-cracks played an important roles in very high cycle fatigue behaviors. The failure mechanisms for the fatigue design of materials and components are mentioned.

Study on the Crack Occurrence and Progress by Durability Test for Vehicular Turbine Housing (차량용 터빈 하우징의 내구시험에 의한 균열 발생 및 진행에 대한 연구)

  • Shin, Sang-Yun;Lee, Do-Hoon;Won, Soon-Jea;Kim, Dong-Hyoung;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.38 no.2
    • /
    • pp.48-54
    • /
    • 2018
  • To improve the durability of the turbocharger, it is important to suppress cracking of the turbine housing; therefore, we investigated the initiation and growth of these cracks. First, we initiated a crack in the turbine housing using endurance experiments. After the endurance test, cracks mainly occurred in the valve seat, the nozzle area, and the scroll part of the turbine housing. The results of a fracture analysis of the cracks showed that cracks in the valve seat were initiated by fatigue fracture. This seems to be caused by the accumulation of mechanical and thermal stresses due to vibration of the turbine wheel and high-temperature exhaust gas. Also, cracks in nozzle and scroll area were initiated by intergranular corrosion due to the exhaust gas. Thus, although there are differences in the cause of initiation according to the site, a concentric waveform was observed in all fracture planes. This phenomenon indicates that cracks gradually grow due to repeated stress changes, and the main causes are the temperature difference of the exhaust gas and the vibration caused by the turbine shaft.

A Study of the Affected Layer and Stress Corrosion Crack of Ultra-high-strength Steel (300M) for Aircraft Parts (항공기용 초고장력강(300M) 부품의 가공변질층과 응력부식균열에 관한 연구)

  • Ahn, Jinwoo;Kim, Taehwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.1-8
    • /
    • 2020
  • Mechanical components that support structures in aerospace and power generation industries require high-strength materials. Particularly, in the aerospace industry, aluminum alloys, titanium alloys, and composite materials are increasingly used due to their high maneuverability and durability to withstand low temperature extreme environments; however, ultra-high-strength steel is still used in key components under heavy loads such as landing gears. In this paper, the fault cause analysis and troubleshooting of aircraft parts made of ultra-high-strength steel (300M) broken during normal operation are described. To identify the cause of the defect, a temporary inspection of the same aircraft was performed, and material testing, non-destructive inspection, microstructure examination, and fracture area inspection of the damaged parts were performed. Fracture analysis results showed that a crack in the shape of a branch developed from the tool mark in the direction of the intergranular strain. Based on the results, the cause of fracture was confirmed to be stress corrosion.

Analysis of Flow on Grooving Corrosion at the Weld of a Carbon Steel pipe made by Electrical Resistance Welding (전기저항 용접강관의 홈부식에 미치는 유동 해석)

  • Kim, Yong;Jang, Hyeuk;Ryu, Duck-Hee;Kim, Jae-Seong;Lee, Bo-Young;Boo, Joon-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1-6
    • /
    • 2004
  • Lots of researches were gone already about grooving corrosion mechanism of ERW carbon steel pipe. But there is seldom study for water hammer happened by fluid and acceleration of corrosion rate by incresed flow velocity. Therefore, in this study carried out the analysis based on hydrodynamic and fracture mechanics. Analyzed stress that act on a pipe using ANSYS as a program, and also FLUENT and STAR-CD were used for flow phenomenon confirmation. As the result, fatigue failure is happened by water hammer and corrosion rate was increased because of turbulent flow.

  • PDF