• Title/Summary/Keyword: corrosion effect

Search Result 1,779, Processing Time 0.029 seconds

Study on Increasing High Temperature pH(t) to Reduce Iron Corrosion Products (철부식생성물 저감을 위한 고온 pH(t) 상향 연구)

  • Shin, Dong-Man;Hur, Nam-Yong;Kim, Wang-Bae
    • Corrosion Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.175-179
    • /
    • 2011
  • The transportation and deposition of iron corrosion products are important elements that affect both the steam generator (SG) integrity and secondary system in pressurized water reactor (PWR) nuclear power plants. Most of iron corrosion products are generated on carbon steel materials due to flow accelerated corrosion (FAC). The several parameters like water chemistry, temperature, hydrodynamic, and steel composition affect FAC. It is well established that the at-temperature pH of the deaerated water system has a first order effect on the FAC rate of carbon steels through nuclear industry researches. In order to reduce transportation and deposition of iron corrosion products, increasing pH(t) tests were applied on secondary system of A, B units. Increasing pH(t) successfully reduced flow accelerated corrosion. The effect of increasing pH(t) to inhibit FAC was identified through the experiment and pH(t) evaluation in this paper.

Corrosion Characteristics of Diffusion Barrier in Copper CMP (구리 CMP시 확산방지막의 부식특성)

  • Lee, Do-Won;Kim, Nam-Hoon;Lim, Jong-Heun;Kim, Sang-Yong;Lee, Chul-In;Chang, Eui-Gu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.162-165
    • /
    • 2003
  • The corrosion characteristics of diffusion barrier in Copper CMP has been investigated. Key experimental variables that has been investigated are the corrosion rate by different agents containing slurry of Cu CMP. Whenever Cu and Ta films were corroded adding each oxidizer, the corrosion rate of Ta was much lower than that of Cu. That is, the difference in the corrosion rates of Ta by oxidizer was not larger as compared with Cu. As corroded by complexing agents, the corrosion rate of Ta was close to O. The corrosion rate of Ta increased as added $HNO_3$ and $CH_3COOH$ compared with the reference slurry; on the other hand, it decreased with addition of HF. In addition, resulting corrosion rate went up with lower pH of agent. The corrosion rates by agents were however significant small; hence, it doesn't affect on the removal rate of Cu CMP practically. Consequently, this can be explained by assuming that the mechanical effect dominates than the chemical effect on the polishing rate of Ta(TaN).

  • PDF

Effect of the Amplitude in Ultrasonic Nano-crystalline Surface Modification on the Corrosion Properties of Alloy 600

  • Kim, Ki Tae;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.196-205
    • /
    • 2019
  • Surface modification techniques are known to improve SCC by adding large compressive residual stresses to metal surfaces. This surface modification technology is attracting attention because it is an economical and practical technology compared to the maintenance method of existing nuclear power plants. Surface modification techniques include laser, water jet and ultrasonic peening, pinning and ultrasonic Nano-crystal surface modification (UNSM). The focus of this study was on the effect of ultrasonic amplitude in UNSM treatment on the corrosion properties of Alloy 600. A microstructure analysis was conducted using an optical microscope (OM), scanning electron microscope (SEM) and electron backscattering diffraction (EBSD). A cyclic polarization test and AC-impedance measurement were both used to analyze the corrosion properties. UNSM treatment influences the corrosion resistance of Alloy 600 depending on its amplitude. Below the critical amplitude value, the pitting corrosion properties are improved by grain refinement and compressive residual stress, but above the critical amplitude value, crevices are formed by the formation of overlapped waves. These crevices act as corrosion initiators, reducing pitting corrosion resistance.

Valorization of Cork Waste to Improve the Anti-Corrosion Properties of Concrete Reinforcements

  • Belkhir, S.;Bensabra, H.;Chopart, J.P.
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.100-110
    • /
    • 2022
  • Corrosion of steel reinforcement is the most important mode of concrete structures damages. It strongly depends on the composition and physicochemical properties of the cementitious medium. The use of waste materials as lightweight aggregates in concrete is environmentally recommended in polluted environments such as marine and/or industrial atmospheres in order to reduce its porosity and ensure the requested protection of reinforcing steel. The present study investigated the effect of waste cork addition on corrosion resistance of steel rebar in mortar specimen prepared in the laboratory. The main objective of this study was to improve the corrosion resistance of reinforcing steel. Another objective of this study was to valorize this ecological product and preserve the environment. Results obtained from various electrochemical tests indicated that the presence of a fine cork powder substantially improved the corrosion resistance of steel in the mortar contaminated by chloride ions. This improvement was reflected by a notable decrease in corrosion current density and a shift of corrosion potential of the steel towards more noble values. Moreover, the presence of a fine cork powder in the mortar had no adverse effect on its mechanical properties.

Effect of 20 % EDTA Aqueous Solution on Defective Tubes (Alloy600) in High Temperature Chemical Cleaning Environments (고온화학세정환경에서 20 % EDTA 용액이 결함 전열관 (Alloy600)에 미치는 영향)

  • Kwon, Hyuk-chul
    • Corrosion Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.84-91
    • /
    • 2016
  • The transport and deposition of corrosion products in pressurized water nuclear reactor (PWR) steam generators have led to corrosion (SCC, denting etc.) problems. Lancing, mechanical cleaning and chemical cleaning have been used to reduce these problems. The methods of lancing and mechanical cleaning have limitations in removing corrosion products due to the structure of steam generator tubes. But high temperature chemical cleaning (HTCC) with EDTA is the most effective method to remove corrosion products regardless of the structure. However, EDTA in chemical cleaning aqueous solution and chemical cleaning environments affects the integrity of materials used in steam generators. The nuclear power plants have to perform the pre-test (also called as qualification test (QT)) that confirms the effect on the integrity of materials after HTCC. This is one of the series studies that assess the effect, and this study determines the effects of 20 % EDTA aqueous solution on defective tubes in high temperature chemical cleaning environments. The depth and magnitude of defects in steam generator (SG) tubes were measured by eddy current test (ECT) signals. Surface analysis and magnitude of defects were performed by using SEM/EDS. Corrosion rate was assessed by weight loss of specimens. The ECT signals (potential and depth %) of defective tubes increased marginally. But the lengths of defects, oxides on the surface and weights of specimens did not change. The average corrosion rate of standard corrosion specimens was negligible. But the surfaces on specimens showed traces of etching. The depth of etching showed a range on the nanometer. After comprehensive evaluation of all the results, it is concluded that 20 % EDTA aqueous solution in high temperature chemical cleaning environments does not have a negative effect on defective tubes.

Effect of corrosion on the ultimate strength of double hull oil tankers - Part I: stiffened panels

  • Kim, Do Kyun;Park, Dae Kyeom;Kim, Jeong Hwan;Kim, Sang Jin;Kim, Bong Ju;Seo, Jung Kwan;Paik, Jeom Kee
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.507-530
    • /
    • 2012
  • Age-related problems especially corrosion and fatigue are normally suffered by weatherworn ships and aging offshore structures. The effect of corrosion is one of the important factors in the Common Structural Rule (CSR) guideline of the ship design based on a 20 or 25 years design life. The aim of this research is the clarification of the corrosion effect on ultimate strength of stiffened panels on various types of double hull oil tankers. In the case of ships, corrosion is a phenomenon caused by the ambient environment and it has different characteristics depending on the parts involved. Extensive research considering these characteristic have already done by previous researchers. Based on this data, the ultimate strength behavior of stiffened panels for four double hull oil tankers such as VLCC, Suezmax, Aframax, and Panamax classes are compared and analyzed. By considering hogging and sagging bending moments, the stiffened panels of the deck, inner bottom and outer bottom located far away from neutral axis of ship are assessed. The results of this paper will be useful in evaluating the ultimate strength of an oil tanker subjected to corrosion. These results will be an informative example to check the effect of ultimate strength of a stiffened panel according to corrosion addition from CSR for a given type of ship.

Effect of corrosion on the ultimate strength of double hull oil tankers - Part II: hull girders

  • Kim, Do Kyun;Park, Dae Kyeom;Park, Dong Hee;Kim, Han Byul;Kim, Bong Ju;Seo, Jung Kwan;Paik, Jeom Kee
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.531-549
    • /
    • 2012
  • Numerous oil tanker losses have been reported and one of the possible causes of such casualties is caused by the structural failure of aging ship hulls in rough weather. In aging ships, corrosion and fatigue cracks are the two most important factors affecting structural safety and integrity. This research is about effect on hull girder ultimate strength behavior of double hull oil tanker according to corrosion after Part I: stiffened panel. Based on corrosion data of Part I (time-dependent corrosion wastage model and CSR corrosion model), when progressing corrosion of fourtypes of double hull oil tankers (VLCC, Suezmax, Aframax, and Panamax), the ultimate strength behavior of hull girder is compared and analyzed. In case of the ultimate strength behavior of hull girder, when occurring corrosion, the result under vertical and horizontal bending moment is analyzed. The effect of time-dependent corrosion wastage on the ultimate hull girder strength as well as the area, section modulus, and moment of inertia are also studied. The result of this research will be useful data to evaluate ultimate hull girder strength of corroded double hull oil tanker.

A Study on the Estimation of the Coefficient of Electrolytic Corrosion according to Concrete Compressive Strength (콘크리트 강도에 따른 철근의 전식계수 산정에 관한 연구)

  • Kang, Taek-Sun;Jee, Namyong;Yoon, Sang-Chun;Kim, Jae-Hun;Kim, Dong-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.834-837
    • /
    • 2004
  • In this study, the electric accelerated reinforcing bar corrosion test was carried out to estimate the coefficient of electrolytic corrosion based on the concept of Faraday's law according to rebar corrosion rate and concrete compressive strength which had an effect on the actual corrosion mass loss. The results of this paper allow the prediction of corrosion amount in the electric accelerated reinforcing bar corrosion test method.

  • PDF

Radiation effect on the corrosion of disposal canister materials

  • Minsoo Lee;Junhyuk Jang;Jin Seop Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.941-948
    • /
    • 2024
  • The effects of radiation on the corrosion of canister materials were investigated for the reliable disposal of high-level radioactive waste. The test specimens were gamma-irradiated at a very low dose rate of approximately 0.1 Gy/h for six and twelve months. The copper and cast iron species were less corroded when irradiated. It is hypothesized that gamma rays suppress the formation of lower-enthalpy species like metal oxides and activate reductive reactions. In contrast, it was difficult to evaluate the effect of radiation on the corrosion of titanium and stainless steel.

The Effect of Annealing on Corrosion Behavior of CoCrTa/CrNi Magnetic Recording Media (CoCrTa/CrNi 자기기록매체의 열처리에 따른 부식거동 변화)

  • 우준형;남인탁
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.4
    • /
    • pp.210-216
    • /
    • 1999
  • The objective of this paper is to investigate corrosion behaviors of CoCrTa/CrNi thin film and post heat-treatment effect. An electron beam evaporator was used for films deposition. After evaporation, post heat-treatment was carried out under $5.0{\times}10^3$ Torr vacuum condition. Annealing temperature and time were 400 $^{\circ}C$ and 30 min, respectively. To understand the effect of annealing on corrosion behavior of CoCrTa/CrNi, potentiodynamic polarization technique and accelerated corrosion chamber test were undertaken. Corrosion potential is higher for the annealed samples (CoCrTa 400$\AA$/CrNi 1000$\AA$) than for as-deposited one. This is attributed to an enrichment of Cr in the surface layer of the thinfilm resulting in a more corrosion resistant material.

  • PDF