• Title/Summary/Keyword: corrosion effect

Search Result 1,761, Processing Time 0.031 seconds

Effect of Hydrodynamic Condition on the Electrochemical Behavior of Various Metals in 3.5 wt% NaCl Solution

  • Pan, Szu-Jung;Hadinata, Samuel-Sudibyo;Kao, Ruey-Chy;Tsai, Wen-Ta
    • Corrosion Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.218-225
    • /
    • 2015
  • The electrochemical behaviors of various metals with and without diamond-like-carbon (DLC) coating in 3.5 wt% NaCl solution were investigated. The effect of hydrodynamic conditions was focused by employing a rotating disc electrode (RDE). The experimental results showed that each bare metal had a more positive corrosion potential and a higher corrosion rate due to enhanced oxygen transport at the higher rotating speed of the RDE. DLC coating caused a substantial increase in the corrosion resistance of all metals studied. However, localized corrosion was still found in the DLC-coated metal at sites where deposition defects existed. Surface morphology examination was performed after the electrochemical test to confirm the roles of hydrodynamic conditions and DLC coating.

Effect of Aging Time on the Resistance to Localized Corrosion of the Hyper Duplex Stainless Steel

  • Jeon, Soon-Hyeok;Kim, Soon-Tae;Lee, In-Sung;Kim, Ji-Soo;Kim, Kwang-Tae;Park, Yong-Soo
    • Corrosion Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.209-215
    • /
    • 2010
  • To elucidate the effect of aging time on resistance to localized corrosion of hyper duplex stainless steel, a double-loop electrochemical potentiokinetic reactivation test a potentiodynamic anodic polarization test, a scanning electron microscope-energy dispersive spectroscope analysis, and a thermodynamic calculation were conducted. With an increase in aging time, sigma phases are precipitated much more than chi phases due to the meta-stable chi phase acting as a transition phase. As aging time at $850^{\circ}C$ increases, the corrosion resistance decreases owing to an increase in Cr, Mo and W depleted areas adjacent to the intermetallic phases such as sigma phases and chi phases.

Influence of Shot Peening on the Corrosion of Spring Steel (스프링강의 부식에 미치는 쇼트피닝의 영향)

  • HA KYUNG-JUN;PARK KYUNG-DONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.3 s.52
    • /
    • pp.39-45
    • /
    • 2003
  • Shot peening is an effective method of improving the fatigue strength of components and structures. The compressive residual stress produced by surface plastic deformation with shot peening is usually regarded as the major factor in increasing fatigue strength. In this study, the influence of shot peening on corrosion was investigated. Spring steel immersed in $3.5\%$ NaCl prior was used to evaluate the effect of shot peening on fatigue properties. The immersion test was performed on the five kinds of specimens with shot peened and unpeened. The distributions of residual stresses of shot peened spring steels were measured in an X-ray diffraction apparatus, using the two-point method. Corrosion potential, polarization curve, residual stress, etc. were investigated, based on the experimental results. From test results, the effect of shot peening on the corrosion was evaluated.

Effect of grain refinement on the performance of AZ80 Mg alloys during wear and corrosion

  • Naik, Gajanan M;Gote, Gopal D.;Narendranath, S;Kumar, S.S. Satheesh
    • Advances in materials Research
    • /
    • v.7 no.2
    • /
    • pp.105-118
    • /
    • 2018
  • Magnesium and its alloys are attracted towards all engineering applications like automotive, marine, aerospace etc. due to its inherent high strength to weight ratio. But, extensive use of Mg alloys is limited to the current scenario because of low wear and corrosion resistance behavior. However, equal channel angular press is one of the severe plastic deformation technique which has been effective method to improve the wear and corrosion resistance by achieving fine grain structure. In this study, the effect of grain refinement on wear and corrosion resistance of AZ80 Mg alloys were investigated. The wear behavior of the coarse and fine-grained Mg alloys was examined through $L_9$ orthogonal array experiments in order to comprehend the wear behavior under varies control parameters. It was shown that ECAPed alloy increased the wear and corrosion resistance of the Mg alloy through the formation of fine grain and uniform distribution of secondary ${\beta}-phase$. Also, the performance of AZ80 Mg alloy for these changeswas discussed through SEM morphology.

Effect of Rebar Corrosion on Mechanical Behaviour of RC Structures

  • Yokota, Hiroshi
    • Corrosion Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.81-88
    • /
    • 2005
  • The effects of rebar corrosion on the structural behaviour of reinforced concrete structures were discussed based on recent experimental investigation. The load carrying capacity of the deteriorated beams was quantitatively estimated by evaluating the degree of rebar corrosion in terms of the average cross-sectional loss of longitudinal reinforcing bars and bond deterioration between corroded reinforcing bars and concrete.

Fracture Analysis Considering the Non-uniform Corrosion Distribution (비선형 부식분포를 고려한 철근덮개 파괴해석)

  • 오병환;장봉석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1041-1044
    • /
    • 2001
  • This study was performed to evaluate the effect of non-uniform corrosion distribution on the analysis of concrete cover failure. A series of experiments have been undertaken to measure the corrosion rate of reinforcement according to the concentration of chloride ion so as to suggest a relationship between the reinforcement corrosion rate and chloride ion density. The corrosion induced pressure depending on the density of chloride ion has been derived. And nonlinear analysis assuming nonlinear corrosion distribution for cover cracking was achieved and compared with other experimental results to verify the accuracy of the model. Analysis was also performed for various parameters to compare their effects.

  • PDF

Improvement of Corrosion Resistance of Aluminum Alloy with Wettability Controlled Porous Oxide films

  • Sakairi, M.;Goyal, V.
    • Corrosion Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.166-170
    • /
    • 2016
  • The combined process of porous type anodizing and desiccation treatment was applied to improve wettability of A1050 aluminum alloy. The water contact angles of anodized samples were increaseds considerably with desiccation treatment. However, there was no considerable effect of polishing and anodizing time on water contact angle. The corrosion behavior with the treatments was investigated electrochemically. The corrosion resistance of the samples in 3.5 mass% NaCl solutions increased with higher contact angle. Anodized and desiccated samples showed better corrosion resistance than un-desiccated samples around rest potential region.

The Effect of Solution Treatment on Intergranular Corrosion Resistance of a New Type Ultra Low Carbon Stainless Steel

  • Julin, Wang;Nannan, Ni;Qingling, Yan;Lingli, Liu
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.140-146
    • /
    • 2007
  • In the paper, with corrosion velocity measurement and metallographic observation on specimens after sulfuric acid/ferric sulfate boiling experiment, intergranular corrosion tendency of the new type ultra low carbon stainless steel developed by ourselves which experienced solution treatment at different temperatures was evaluated. A VHX 500 super depth field tridimensional microscope was used to observe corrosion patterns on the sample surfaces. The depth and width of grain boundary corrosion groove were measured by the tridimensional microscope, which indicated that the corrosion degrees of the samples which received solution treatment at different temperatures are quite different. Transgranular corrosion at different degree occurred along with forged glide lines. After comparison it was proved that the stainless steel treated at $1100^{\circ}C$ performs very well against intergranular corrosion.