• 제목/요약/키워드: corrosion cost

검색결과 335건 처리시간 0.022초

저가형 냉각탑 자동 수질 진단 시스템 개발 (Development of a Low-cost Automatic Water Quality Diagnosis System for Cooling Towers)

  • 김정환;박한빈;강태삼;박정근
    • 센서학회지
    • /
    • 제23권1호
    • /
    • pp.58-65
    • /
    • 2014
  • We developed a low-cost automatic diagnosis system for water quality in cooling towers to measure the concentrations of key ingredients such as $Ca^{2+}$, $Cl^-$, $PO{_4}^{3-}$, and $Fe^{2+}$. $Ca^{2+}$, and $Cl^-$ are the main factors that cause the generation of scale, corrosion, and sludge in water pipes. $PO{_4}^{3-}$ prevents corrosion, sludge and scale by inhibiting the ions (i.e., $Ca^{2+}$, $Cl^-$) from sticking to the pipes. $Fe^{2+}$ is an indicator of pipe corrosion. The proposed system consists of a microprocessor, a specimen container and heater, a precision pump, relays and valves, LED optical sources, and photo detectors. It automatically collects water samples and carries out pretreatment for determining the concentration of each chemical, and then estimates the concentration of each ion using low-cost LED optical sources and detectors. Experimental results showed that the accuracy of the proposed system is sufficiently high for water quality diagnosis and management of cooling towers, demonstrating the possibility of the proposed system's wide usage in real environments.

Development of the Corrosion Deterioration Inspection Tool for Transmission Tower Members

  • Woo, Sangkyun;Chu, Inyeop;Youn, Byongdon;Kim, Kijung
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권2호
    • /
    • pp.293-298
    • /
    • 2016
  • Recently, interests for maintenance of transmission tower are increasing to extend life of structures and reduce maintenance cost. However, existing classical diagnosis method of corrosion deteriorated degree on the transmission tower steel members, visual inspection, has a problem that error often due to difference of inspector's individual knowledge and experience. In order to solve the problem, this study carried out to develop the corrosion deterioration inspection tool for transmission tower steel members. This tool is composed of camera equipment and computer-aided diagnosis system. We standardized the photographing method by camera equipment to obtain suitable pictures for image processing. Diagnosis system was designed to evaluate automatically degree of corrosion deterioration for member of transmission tower on the basis of the RGB color image processing techniques. It is anticipated that developed the corrosion deterioration inspection tool will be very helpful in decision of optimal maintenance time for transmission tower corrosion.

알루미늄 5052 합금의 산화피막 성장 및 내식성 연구 (Study on Corrosion and Oxide Growth Behavior of Anodized Aluminum 5052 Alloy)

  • 지혜정;정찬영
    • 한국표면공학회지
    • /
    • 제51권6호
    • /
    • pp.372-380
    • /
    • 2018
  • Anodization techniques are widely used in the area of surface treatment of aluminum alloys because of its simplicity, low-cost and good corrosion resistance. In this study, we investigated the relationship between the properties (porosity and thickness) of anodic aluminum oxide (AAO) and its corrosion behavior. Aluminum 5052 alloy was anodized in 0.3 M oxalic acid at $0^{\circ}C$. The anodizing of aluminum 5052 was performed at 20 V, 40 V and 60 V for various durations. The corrosion behavior was studied in 3.5 wt % NaCl using potentiodynamic polarization method. Results showed that the pore diameter and thickness increased as voltage and anodization time increased. The relatively thick oxide film revealed a lower corrosion current density and a higher corrosion potential value.

Corrosion Inhibition Screening of 2-((6-aminopyridin-2-yl)imino)indolin-3-one: Weight Loss, Morphology, and DFT Investigations

  • Nadia Betti;Ahmed A. Al-Amiery
    • Corrosion Science and Technology
    • /
    • 제22권1호
    • /
    • pp.10-20
    • /
    • 2023
  • Because of its inexpensive cost, mild steel is frequently employed as a construction material in different industries. Unfortunately, because of its limited resistance to corrosion, a protective layer must be applied to keep it from decaying in acidic or basic environments. The presence of heteroatoms, such as nitrogen, oxygen, and pi-electrons in the Schiff base could cause effective adsorption on the mild steel surface, preventing corrosion. The weight loss method and scanning electron microscopy (SEM) were used to investigate the inhibitory effects of APIDO on mild steel in a 1 M hydrochloric acid environment. The efficiency of inhibition increased as the inhibitor concentration increased and decreased as the temperature increased. The SEM analysis confirmed that the corrosion inhibition of APIDO proceeded by the formation of an organic protective layer over the mild steel surface by the adsorption process. Simulations based on the density functional theory are used to associate inhibitory efficacy with basic molecular characteristics. The findings acquired were compatible with the experimental information provided in the research.

해수 온도에 따른 S355ML 강재의 부식 경향 평가 (Evaluation of Corrosion Tendency for S355ML Steel with Seawater Temperature)

  • 장석기;이승준;박재철;김성종
    • Corrosion Science and Technology
    • /
    • 제14권5호
    • /
    • pp.232-238
    • /
    • 2015
  • Corrosion is of greatest concern for metallic materials exposed to corrosive seawater or aggressive marine atmospheres. Marine structures and components made of metallic materials incur an initial cost and additional large costs for corrosion control and maintenance. There have been worldwide efforts to minimize marine corrosion and extend service life of the materials. It is believed that various factors are associated with corrosion of marine grade metallic materials, particularly the temperature of the solution affecting the corrosion rate by changing dissolved oxygen solubility and concentrations of chloride. In the present study, the electrochemical characteristics of S355ML steel are investigated to identify corrosion acceleration tendencies with changes in solution temperature under marine environments. It was found that increasing seawater temperature, promoted not only activation of chloride ion transfer, but also the formation of porous $Fe(OH)_3$ or $Fe_2O_3$, leading to the acceleration of corrosion.

An advanced technique to predict time-dependent corrosion damage of onshore, offshore, nearshore and ship structures: Part I = generalisation

  • Kim, Do Kyun;Wong, Eileen Wee Chin;Cho, Nak-Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.657-666
    • /
    • 2020
  • A reliable and cost-effective technique for the development of corrosion damage model is introduced to predict nonlinear time-dependent corrosion wastage of steel structures. A detailed explanation on how to propose a generalised mathematical formulation of the corrosion model is investigated in this paper (Part I), and verification and application of the developed method are covered in the following paper (Part II) by adopting corrosion data of a ship's ballast tank structure. In this study, probabilistic approaches including statistical analysis were applied to select the best fit probability density function (PDF) for the measured corrosion data. The sub-parameters of selected PDF, e.g., the largest extreme value distribution consisting of scale, and shape parameters, can be formulated as a function of time using curve fitting method. The proposed technique to formulate the refined time-dependent corrosion wastage model (TDCWM) will be useful for engineers as it provides an easy and accurate prediction of the 1) starting time of corrosion, 2) remaining life of the structure, and 3) nonlinear corrosion damage amount over time. In addition, the obtained outcome can be utilised for the development of simplified engineering software shown in Appendix B.

배급수 계통에서 부식억제제 적용에 따른 부식과 적수와의 상관관계 (Correlation between Corrosion Rate and Red Water on Application of Corrosion Inhibitor in Drinking Water Distribution System)

  • 우달식;구성은;이병두;김주환;문광순
    • 상하수도학회지
    • /
    • 제19권1호
    • /
    • pp.68-77
    • /
    • 2005
  • This study was performed to evaluate the application of corrosion inhibitor and to examine the correlation between corrosion rate and red water in a series of batch tests and a test using auto corrosion monitoring system at A water treatment plant in Gyeonggido. The corrosion study in the auto corrosion monitoring system indicated that Fe concentration decreased by 30~50% and corrosion rate also reduced remarkably with corrosion inhibitor at $1.8mg\;PO_4/L$. After addition of corrosion inhibitor, it was indicated the effective adsorption of the inhibitor on the surface of the pipe line forming a protective film. The corrosion rate increases with the increase in Fe concentration. With $1.8mg\;PO_4/L$ of corrosion inhibitor, the corrosion rate decreased remarkably. Fe concentration had correlation to not only red water problems but also the corrosion rate that actually dissolved into the water, primarily due to the deposition of oxidized iron or other compounds as a scale, which serves as a large reservoir of corrosion by-product. Therefore, corrosion rate can be estimated by Fe concentration. For these reasons, an effective corrosion inhibitor is also an effective red water control reagent. The effect of the corrosion inhibition can last for some time even the application the corrosion inhibitor is discontinued. For the cost effective and efficient corrosion control, the concentration and timing of corrosion inhibitor addition must be determined properly.

고온 축열재료의 특성 (Characteristics of High-Temperature Energy Storage Materials)

  • 신병철;김상돈;박건유;박원훈
    • 태양에너지
    • /
    • 제7권1호
    • /
    • pp.61-74
    • /
    • 1987
  • This review evaluates the state of art in the field of high-temperature energy storage materials and systems. The physical and chemical properties, corrosion data and practical applications of the phase change materials, especially the inorganic salts applicable to storage temperature in the range of $100-850^{\circ}C$ have been summarized. Fluoride salts have excellent thermal storage properties, but these are less attractive in terms of cost and corrosion problem of container materials. The nitrate and nitrite have attractive properties in the temperature range up to $600^{\circ}C$, at which the rate of decomposition becomes unacceptable. Carbonates euteutic salts can be considered as the most promising energy storage material on the basis of their low cost and excellent material compatibility for corrosion in the temperature range up to $850^{\circ}C$.

  • PDF

Anti-corrosion impact of green synthesis of Silica nanoparticles for the sports structures in physical exercise activities

  • Zhixin Zhang;Zhiqiang Cai;Khidhair Jasim Mohammed;H. Elhosiny Ali
    • Advances in concrete construction
    • /
    • 제15권1호
    • /
    • pp.41-46
    • /
    • 2023
  • Sport has no age limit and can be done anywhere and in any condition with minimal equipment. The existence of sports spaces in all parts of the world is considered a citizen's right. One of the activities carried out in this field is installing sports equipment and structures in parks and encouraging citizens to use this equipment for physical health with the least cost and facilities. Installing sports structures in open spaces such as parks is a practical step for developing citizens' sports. Although using devices in parks is acceptable, it is more critical to meet scientific and technical standards. The components of these structures must have high strength and endurance against changes in environmental conditions such as humidity, temperature difference, and corrosion. Among the various causes of material degradation, corrosion has always been one of several fundamental causes of metal equipment failure. Sports structures in open spaces are not safe from corrosion. Uniform corrosion is the most common type of corrosion. This corrosion usually occurs uniformly through a chemical or electrochemical reaction across the surface exposed to the corrosive environment. Rust and corrosion of outdoor sports structures are examples of this corrosion. For this reason, in this research, with the green synthesis of silica nanoparticles and its application in outdoor sports structures, the life span of these structures can be increased for the use of physical exercises as well as their quality.

알루미늄 코팅처리 스테인레스강의 융탄산염 내부식성 (The corrosion-resistant of Al-coated xstainless in molten carbonate)

  • 조남웅;장세기;전재호;신정철
    • 한국표면공학회지
    • /
    • 제31권1호
    • /
    • pp.3-11
    • /
    • 1998
  • Molten Carbonate Fuel cell is a promising new type electric power generation system which can achieve high efficiency, lower matrrial cost and high operating temperature Making internal reforming possible. Although the development of the MCEC is progressing rapidly toward commercialization, two important tchological problems such as dissolution of NiO cathode and not corrosion of metallic separator plate must be resolved. Because MCFC is operated at $650^{\circ}C$ and the electrolyte is very corrosive, corrosion-resistance of separator plated against oxidation abd molten carbonate is required. Al-coating on separator material for corrosion-resistance was carried out by painting, thermal spraying. hot dipping and vacuum vapour deposition. The corrosion of Al-coated STS 316S and 316L in molten carbonate at $700^{\circ}C$was studied. Vacuum vapour deposition and thermal spraing for Al-coating on STS 310S and 316L were the most effective methods for protecting thestainless steel corrosion in molten carbonate.

  • PDF