• Title/Summary/Keyword: corroded steel

Search Result 207, Processing Time 0.022 seconds

The Investigation of Deteriortion of Concrete Structures due to the De-icing Salts (융빙제 사용으로 인해 열화된 콘크리트 구조물의 내구성 조사)

  • 문한영;김성수;류재석;김홍삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.77-82
    • /
    • 1996
  • The study was performed for the purpose of obtaining the fundamental data to improve the durability of concrete structures due to de-icing salts. To assume the degree of concrete deterioration, soluble chloride content in concrete, the depth of carbonation and compressive strength of core specimens were measured. The porgress of corrosion of concrete bridge was electrochemically monitored. The results show that the concrete structure was deteriorated and reinforced steel in concrete was corroded due to de-icing salts.

  • PDF

Radiation effect on the corrosion of disposal canister materials

  • Minsoo Lee;Junhyuk Jang;Jin Seop Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.941-948
    • /
    • 2024
  • The effects of radiation on the corrosion of canister materials were investigated for the reliable disposal of high-level radioactive waste. The test specimens were gamma-irradiated at a very low dose rate of approximately 0.1 Gy/h for six and twelve months. The copper and cast iron species were less corroded when irradiated. It is hypothesized that gamma rays suppress the formation of lower-enthalpy species like metal oxides and activate reductive reactions. In contrast, it was difficult to evaluate the effect of radiation on the corrosion of titanium and stainless steel.

Evaluation method for time-dependent corrosion depth of uncoated weathering steel using thickness of corrosion product layer

  • Kainuma, Shigenobu;Yamamoto, Yuya;Ahn, Jin-Hee;Jeong, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.191-201
    • /
    • 2018
  • The corrosion environments in a steel structure are significantly different depending on the individual parts of the members. To ensure the safety of weathering steel structures, it is important to evaluate the time-dependent corrosion behavior. Thus, the progress and effect of corrosion damage on weathering steel members should be evaluated; however, the predicted corrosion depth, which is affected by the corrosion environment, has not been sufficiently considered until now. In this study, the time-dependent thicknesses of the corrosion product layer were examined to quantifiably investigate and determine the corrosion depth of the corroded surface according to the exposure periods and corrosion environments. Thus, their atmospheric exposure tests were carried out for 4 years under different corrosion environments. The relationship between the thickness of the corrosion product layers and mean corrosion depth was examined based on the corrosion environment. Thus, the micro corrosion environments on the skyward and groundward surfaces of the specimens were monitored using atmospheric corrosion monitor sensors. In addition, the evaluated mean corrosion depth was calculated based on the thickness of the corrosion product layer in an atmospheric corrosion environment, and was verified through a comparison with the measured mean corrosion depth.

Corrosion Behavior of the parts of Carbon Steel Bolted GECM(Graphite Epoxy Composite Material)/Al plates (탄소강 볼트 체결된 GECM(Graphite Epoxy Composite Material)/Al 판재의 구성 부재의 부식 거동)

  • Kim, Youngsik;Park, Sujin;Yoo, Youngran
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.232-241
    • /
    • 2012
  • This work focused on corrosion of carbon steel bolted GECM/Al parts in tap water and NaCl solutions. In tap water and NaCl solutions, open circuit potential of GECM and its potentials in a series of carbon steel bolt>Ti>Al became active. Regardless of test materials, open circuit potentials in tap water were noble, and increasing NaCl concentration, its potentials became active. Immersion test of single specimen showed that no corrosion occur in Ti and GECM. In tap water, carbon steel bolt didn't show red corrosion product and in chloride solutions, corrosion rate in 1% NaCl solution was greater than its rate in 3.5% NaCl solution and red corrosion product in 1% NaCl solution was earlier observed than that in 3.5% NaCl solution. It seems that this behavior would be related to zinc-coatings on the surface of carbon stee l bolt. On the other hand, aluminium was corroded in tap water and chloride solutions. Corrosion of aluminium in tap water was due to the presence of chloride ion in tap water by sterilizing process.

Relation between total degradation of steel concrete bond and degree of corrosion of RC beams experimental and computational studies

  • Maurel, Olivier;Dekoster, Mickael;Buyle-Bodin, Francois
    • Computers and Concrete
    • /
    • v.2 no.1
    • /
    • pp.1-18
    • /
    • 2005
  • This paper presents a study on the effects of localized steel-concrete bond degradation on the flexural behaviour of RC beams. A finite element analysis is undertaken to complete the experimental analysis. The first part deals with an experimental study on beams where bond was removed by using plastic tube at different locations and for various lengths. The flexural behaviour was studied at global scale (load-deflection) and local scale (moment-curvature). The second part, a numerical study using a simplified special finite element (rust element) modelling the rust layer occurring between reinforcement and concrete with corrosion was conducted in order to find the relation between the degree of corrosion and the degradation of the steel-concrete bond. The computed value of the corrosion degree corresponding to the total degradation of bond has been used in a second time to model the tests, in order to evaluate the influence of the loss of bond, the steel cross section reduction, and the combination of both. The results enable to evaluate the influence of the different corrosion effects on the flexural behaviour, according to the length and the location of the corroded zone.

Control of Galvanic Corrosion Between A516Gr.55 Steel and AA7075T6 Depending on NaCl Concentration and Solution Temperature

  • Hur, S.Y.;Jeon, J.M.;Kim, K.T.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.281-287
    • /
    • 2020
  • Chloride ion is one of the most important corrosive agents in atmospheric corrosion, especially in marine environments. It has high adsorption rate and increases the conductivity of electrolytes. Since chloride ions affect the protective properties and the surface composition of the corrosion product, they increase the corrosion rate. A low level of chloride ions leads to uniform corrosion, whereas a high level of chloride ions may induce localized corrosion. However, higher solution temperatures tend to increase the corrosion rate by enhancing the migration of oxygen in the solution. This work focused on the effect of NaCl concentration and temperature on galvanic corrosion between A516Gr.55 carbon steel and AA7075T6 aluminum alloys. When AA7075T6 aluminum alloy was galvanically coupled to A516Gr.55 carbon steel, AA7075T6 was severely corroded regardless of NaCl concentration and solution temperature, unlike the corrosion properties of single specimen. The combined effect of surface treatment involving carbon steel and aluminum alloy on corrosion behavior was also discussed.

Residual Strength of Corroded Reinforced Concrete Beams Using an Adaptive Model Based on ANN

  • Imam, Ashhad;Anifowose, Fatai;Azad, Abul Kalam
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.2
    • /
    • pp.159-172
    • /
    • 2015
  • Estimation of the residual strength of corroded reinforced concrete beams has been studied from experimental and theoretical perspectives. The former is arduous as it involves casting beams of various sizes, which are then subjected to various degrees of corrosion damage. The latter are static; hence cannot be generalized as new coefficients need to be re-generated for new cases. This calls for dynamic models that are adaptive to new cases and offer efficient generalization capability. Computational intelligence techniques have been applied in Construction Engineering modeling problems. However, these techniques have not been adequately applied to the problem addressed in this paper. This study extends the empirical model proposed by Azad et al. (Mag Concr Res 62(6):405-414, 2010), which considered all the adverse effects of corrosion on steel. We proposed four artificial neural networks (ANN) models to predict the residual flexural strength of corroded RC beams using the same data from Azad et al. (2010). We employed two modes of prediction: through the correction factor ($C_f$) and through the residual strength ($M_{res}$). For each mode, we studied the effect of fixed and random data stratification on the performance of the models. The results of the ANN models were found to be in good agreement with experimental values. When compared with the results of Azad et al. (2010), the ANN model with randomized data stratification gave a $C_f$-based prediction with up to 49 % improvement in correlation coefficient and 92 % error reduction. This confirms the reliability of ANN over the empirical models.

A Preliminary Study on the Reused Channel-Type Lining Board with Corrosion-Damage (부식 강재 복공판의 재사용성 평가에 관한 기초적 연구)

  • Kim, In-Tae;Kim, Dong-Woo;Choi, Hyoung-Suk;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.4 s.56
    • /
    • pp.170-179
    • /
    • 2009
  • Channel-type lining board(CLB) is a welded steel structure used in the field of open cut subway excavation and building basement construction. Lining board is generally installed at the underground environment which is exposed to corrosion factors such as humidity, temperature and corrosive gases. This study evaluates reusability of the corroded lining board by experimental and analytical method. Static loading tests were performed to know serviceability of corroded CLB after checking thickness loss of the used CLB parts. Strain of the plates and middle point deflection was measured simultaneously. According to experimental test results and comparison with numerical analysis, the thickness loss of the plates by corrosion makes more vertical displacements and stresses in members under the DB vehicle load considering impact factor. As a result, this paper is proposed a way to evaluate used and corroded CLB by checking the plates thickness and it makes construction engineers easy to know optimal time to replace their old CLBs with new one.

Automated detection of corrosion in used nuclear fuel dry storage canisters using residual neural networks

  • Papamarkou, Theodore;Guy, Hayley;Kroencke, Bryce;Miller, Jordan;Robinette, Preston;Schultz, Daniel;Hinkle, Jacob;Pullum, Laura;Schuman, Catherine;Renshaw, Jeremy;Chatzidakis, Stylianos
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.657-665
    • /
    • 2021
  • Nondestructive evaluation methods play an important role in ensuring component integrity and safety in many industries. Operator fatigue can play a critical role in the reliability of such methods. This is important for inspecting high value assets or assets with a high consequence of failure, such as aerospace and nuclear components. Recent advances in convolution neural networks can support and automate these inspection efforts. This paper proposes using residual neural networks (ResNets) for real-time detection of corrosion, including iron oxide discoloration, pitting and stress corrosion cracking, in dry storage stainless steel canisters housing used nuclear fuel. The proposed approach crops nuclear canister images into smaller tiles, trains a ResNet on these tiles, and classifies images as corroded or intact using the per-image count of tiles predicted as corroded by the ResNet. The results demonstrate that such a deep learning approach allows to detect the locus of corrosion via smaller tiles, and at the same time to infer with high accuracy whether an image comes from a corroded canister. Thereby, the proposed approach holds promise to automate and speed up nuclear fuel canister inspections, to minimize inspection costs, and to partially replace human-conducted onsite inspections, thus reducing radiation doses to personnel.

Structural response of corroded RC beams: a comprehensive damage approach

  • Finozzi, Irene Barbara Nina;Berto, Luisa;Saetta, Anna
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.411-436
    • /
    • 2015
  • In this work, a comprehensive approach to model the structural behaviour of Reinforced Concrete (RC) beams subjected to reinforcement corrosion is proposed. The coupled environmental - mechanical damage model developed by some of the authors is enhanced for considering the main effects of corrosion on concrete, on composite interaction between reinforcement bars and concrete and on steel reinforcement. This approach is adopted for reproducing a set of experimental tests on RC beams with different corrosion degrees. After the simulation of the sound beams, the main parameters involved in the relationships characterizing the effects of corrosion are calibrated and tested, referring to one degraded beam. Then, in order to validate the proposed approach and to assess its ability to predict the structural response of deteriorated elements, several corroded beams are analyzed. The numerical results show a good agreement with the experimental ones: in particular, the proposed model properly predicts the structural response in terms of both failure mode and load-deflection curves, with increasing corrosion level.