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a b s t r a c t

Nondestructive evaluation methods play an important role in ensuring component integrity and safety in
many industries. Operator fatigue can play a critical role in the reliability of such methods. This is
important for inspecting high value assets or assets with a high consequence of failure, such as aerospace
and nuclear components. Recent advances in convolution neural networks can support and automate
these inspection efforts. This paper proposes using residual neural networks (ResNets) for real-time
detection of corrosion, including iron oxide discoloration, pitting and stress corrosion cracking, in dry
storage stainless steel canisters housing used nuclear fuel. The proposed approach crops nuclear canister
images into smaller tiles, trains a ResNet on these tiles, and classifies images as corroded or intact using
the per-image count of tiles predicted as corroded by the ResNet. The results demonstrate that such a
deep learning approach allows to detect the locus of corrosion via smaller tiles, and at the same time to
infer with high accuracy whether an image comes from a corroded canister. Thereby, the proposed
approach holds promise to automate and speed up nuclear fuel canister inspections, to minimize in-
spection costs, and to partially replace human-conducted onsite inspections, thus reducing radiation
doses to personnel.
© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Dry storage systems housing used nuclear fuel from commercial
nuclear power reactors (Fig. 1) will be used for longer periods than
initially anticipated and there is a concern that some of these sys-
tems may become vulnerable to physical degradation, e.g., pitting
and chloride-induced stress corrosion cracking (SCC). The potential
for SCC at the heat affected zones of welded stainless-steel interim
amarkou), chatzidakiss@ornl.
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storage canisters has been identified by several agencies [1e8].
Although this concern has motivated the development of delivery
systems and inspection of these canisters on a regular basis [9e25],
the large number of stored canisters that need to be visually
inspected (currently approximately 3,200 canisters have been
installed in the U.S. and projections show that eventually over
10,000 canisters will be required by 2050 [26]), high radiation
levels, limited access (through small size vents) and space con-
straints (overpack-canister gap less than 5e10 cm) make in-situ
visual inspections challenging. This necessitates the development
of remotely operated systems for real-time detection of flaws
including type, location, size, and density, to support future
remediation activities, reduce operator errors, and optimize repair
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Fig. 1. Illustration of a vertical used nuclear fuel dry storage system. This figure is for
illustration purposes and does not attempt to depict a specific design. There is a large
variation in design characteristics, which is not possible to capture in a figure, e.g., dry
storage systems that use a steel overpack for shielding instead of a concrete one or
stainless steel canisters made by welding two cylindrical sections instead of three.

Fig. 2. Example image with visible corrosion, stress corrosion cracks, and artifacts
(scratches, shadows, etc.). Note: this is a laboratory corroded stainless steel sample and
not an image from an actual used fuel canister; to the best of our knowledge no
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quality. As a result, an integrated deep learning framework that
would allow scanning a larger area and with high detection capa-
bilities would be a big step forward to reduce dose-rate to opera-
tors, minimize inspection costs, and ensure long-term safety of
used nuclear fuel canisters.

Existing methods for detecting structural defects in images
include Frangi filters and Hessian affine region detectors [27], total
variation denoising [28,29], combinations of image processing
techniques for feature extraction [30,31] with machine learning
algorithms for classification [32,33], and more lately deep con-
volutional neural networks (CNNs) [34,35]. So far, no deep learning
approaches have been used to address inspection of used nuclear
fuel canisters. Radiation levels typically create “noise”, “flacking”,
“snowing” and other artifacts in cameras. Such artifacts pose a
challenge for conventional feature detection techniques, e.g.,
shallow neural networks, that rely on clean surfaces, isolated de-
fects, and radiation-free viewing with optimal lighting conditions.
So, the process of inspecting used nuclear fuel canisters is not
automated algorithmically and it induces a challenging image
classification problem. Deep learning is a plausible approach for
automating such a challenging classification problem. In fact [35],
have applied CNNs for detecting concrete cracks in radiation-free
civil infrastructures. Along the lines of [35], this paper crops im-
ages to smaller tiles to train the underlying CNN.

The proposed approach is differentiated from Ref. [35] in three
ways. Firstly, ResNets are used for detecting corrosion instead of
deploying a custom CNN architecture. Training three different
ResNets (ResNets-18, ResNet-34 and ResNet-50) demonstrates that
the proposed approach tackles the corrosion detection problem
without being sensitive to the choice of ResNet architecture. Sec-
ondly, the present paper introduces a classification rule for iden-
tifying images as corroded or intact using ResNets trained on tiles
cropped out of these images. This way, the locations of potential
corrosion are linked to tiles predicted as corroded, while at the
same time the problem of classifying the original images is solved
with high prediction accuracy without being sensitive to tile-
specific prediction errors. Finally, the proposed approach is
focused on the specific application of detecting corrosion in real
data imagery similar to used nuclear fuel canisters.

CNNs have been applied for detecting cracks in videos of nuclear
power plants [36]. The proposed approach differs from Ref. [36] in
four aspects. Firstly, data have been collected from nuclear fuel
canisters, and not from nuclear power plants. Secondly, the EPRI
data consist of images (spatial information), and not of videos
(spatiotemporal information). Thirdly, the classification problem in
this paper is to decide whether each image contains any sign of
corrosion, whereas the classification problem in Ref. [36] is to
decide whether tubelets extracted from multiple video frames
contain corrosion cracks. Fourthly, this paper employs ResNets for
tile classification in conjunction with a custom image classification
rule, whereas [36] employs a custom CNN architecture for crack
patch detection per frame along with a three-step data fusion al-
gorithm for generating bounding boxes around detected crack
tubelets.
2. Materials and methods

2.1. Data

The research presented in this paper is based on data provided
by the Electric Power Research Institute (EPRI). The data consist of
166 images taken from flaw mockup specimens produced by EPRI.
These images, which capture stainless-steel canister surfaces, were
taken with a 16-megapixel camera from a variety of locations, an-
gles, and lighting conditions to induce high variability in the
dataset. Each image has a 4,928 � 3,264-pixel resolution. Fig. 2
shows an example corroded image. Interest is in detecting corro-
sion in the images. The images contain stress corrosion cracks with
and without iron oxide discoloration. Interest is in detecting pitting
or stress corrosion cracks independent of iron oxide discoloration
in the images.

Use of deep learning for detecting nuclear canister corrosion
requires training sets of sample size larger than the 166 available
images. For this reason, the 166 images were cropped into smaller
tiled images of 256 � 256-pixel resolution using a custom-made
algorithm for this task, producing a total of 37,719 tiled images
(referred to as tiles thereafter). Each tile was labeled either as
corroded or as intact, depending onwhether it contains any signs of
corrosion (including iron oxide discoloration, pitting, and stress
corrosion cracks with or without iron oxide discoloration) or not.
Thus, the ground truth for image annotation takes into account only
corrosion identifiable via the naked human eye. The generated
dataset of tiles includes a broad range of image variations (see
Fig. 3), which are necessary for CNN training.
canisters have been detected with defects).



Fig. 3. Examples of 256 � 256-pixel resolution tiles used for training, which demonstrate the large variability in the dataset. Tiles with with corrosion, including iron oxide
discoloration, pitting or stress corrosion cracks (with or without iron oxide discoloration) (3a-3b) are labeled as corroded, while tiles without defects (3c-3d) or with scratches (3e-
3f) or shadows (3g-3h) are labeled as intact.

T. Papamarkou et al. / Nuclear Engineering and Technology 53 (2021) 657e665 659
The 256 � 256-pixel resolution for tiles was chosen empirically.
Such a small resolution facilitates the training process of CNNs with
tiled images coming from original images of varied resolution,
therefore making the approach camera-independent and more
generally applicable. On the other hand, tiles of smaller resolution
may lead CNNs to mistake elongated features, such as scratches, for
cracks. In addition, smaller tiles render their labeling less obvious to
the human eye.

4,957 out of the 37,719 tiles were manually labeled as corroded,
while the remaining 32,762 were labeled as intact. After manually
labeling each tile either as corroded or as intact, the dataset of tiles
was split randomly into a training, validation, and test set, con-
taining 22,215, 7,538, and 7,966 tiles, respectively, thus attaining a
60%e20% � 20% split. In order to keep the training, validation, and
Table 1a
Total number of images and number of corroded and intact images per set in the
original dataset of images (1a), from which the tiles were extracted, and in the
generated dataset of tiles (1b). Rows represent datasets and columns represent
classes.

Set Class

Corroded Intact Total

Training 50 49 99
Validation 17 17 34
Test 17 16 33
Total 84 82 166

Dataset of original images.

Table 1b
Total number of images and number of corroded and intact images per set in the
original dataset of images (1a), from which the tiles were extracted, and in the
generated dataset of tiles (1b). Rows represent datasets and columns represent
classes.

Set Class

Corroded Intact Total

Training 2,898 19,317 22,215
Validation 1,235 6,303 7,538
Test 824 7,142 7,966
Total 4,957 32,762 37,719

Dataset of tiles.
test sets independent, tiles from a particular image were included
in only one set. Table 1a shows the number of corroded and intact
original images while Table 1b shows the number of corroded and
intact tiles in each of the three sets. An original image is corroded if
it contains at least one tile manually labeled as corroded, otherwise
it is intact. It is noted that the 60%e20% � 20% split between
training, validation, and test set is preserved at the level of original
images too (99, 34 and 33 original images in the respective sets).

2.2. Brief overview of CNNs

The first computational model for neural networks were
conceived in the 1940s [37]. Hebian networks were simulated by
Ref. [38] and perceptrons were created by Ref. [39] in the 1950s. The
neocognitron, the origin of the CNN architecture, was introduced by
Ref. [40] in the 1980s. The neocognitron introduced two basic layer
types in CNNs, namely convolutional layers and downsampling
layers. LeNet, a CNN developed by Refs. [41,42] in the 1990s to
recognize hand-written zip code numbers, led to the emergence of
CNNs and laid the foundations of modern computer vision.

A feed-forward CNN consists of multiple layers of units, starting
with an input layer, followed by combinations of convolution,
pooling, activation and fully connected layers, and ending with an
output layer (see Fig. 4). Convolution layers perform convolution
operations to extract high level features from the input image.
Convolution operations preserve the spatial relationship between
pixels by learning image features using small squares of input data.
Each convolution layer is typically followed by a unit-wise activa-
tion function, such as the rectified linear unit (ReLU). Pooling layers
reduce the dimensionality of each extracted feature, but they retain
the most important information. In a fully connected layer, each
neuron is connected to every neuron in the previous layer. Fully
connected layers learn non-linear combinations of the features
identified by the convolutional layers. A common final layer in
CNNs is the softmax layer, which assigns probabilities to each class
label. For a more detailed introduction to CNNs, see for example
[43].

CNNs are prominent tools for image classification for several
reasons. In particular, CNNs.

� are universal function approximators [44],



Fig. 4. Visual representation of a typical feed-forward CNN architecture.
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� attain high predictive accuracy in comparison to other machine
learning algorithms,

� automate feature extraction from input data while preserving
the spatial relationship between pixels,

� reduce the number of parameters via the convolution operator
relatively to fully connected artificial neural networks, and

� allow transfer of knowledge across different domains.

The capacity of CNNs to transfer knowledge across different
domains is known as transfer learning [45]. In practice, transfer
learning entails the following steps; a CNN is trained on a dataset
related to some problem, the knowledge acquired (such as the CNN
weights and biases) is stored, and the stored knowledge for this
pre-trained CNN is used for fine tuning the CNN on a dataset related
to a different, yet usually relevant, problem. In transfer learning,
some components (such as weights or biases) of a CNN are typically
fixed (frozen) to values obtained by pre-training on some dataset,
while new layers or components attached to the pre-trained CNN
are trained on a new dataset.

2.3. Proposed algorithm

In this paper, ResNets are used, which are a specific type of CNN
architecture [46]. The last (output) layer of ResNets is a fully con-
nected layer of 1,000 units. Since this paper deals with the binary
classification problem of whether each image is corroded or intact,
the last fully connected ResNet layer of 1,000 units is replaced by a
fully connected layer of 2 units. The ResNet backbone preceding the
replaced last layer is not frozen. This means that the weights and
biases of the ResNet backbone are not fixed to some pre-trained
values, therefore transfer learning is not employed. Instead, the
modified CNN architecture, arising from the altered last ResNet
layer, is trained by randomly initializing the weights and biases of
all layers.

At a greater level of detail, the last fully connected layer of 1,000
units is replaced by a layer that concatenates adaptive average
pooling and adaptive max pooling, a flattening layer and a fully
connected layer of 2 units. The implementation is based on the
fastai library. More details can be found in the documentation of
the cnn_learner method of fastai and in the accompanying code of
this paper (see Section 2.4).

Each of the 7,719 tile images in the generated dataset is passed
to the ResNet input layer as a 256 � 256 � 3 tensor, whose three
dimensions correspond to tile height, width and RGB channel (red,
green and blue), respectively. The prediction made at the ResNet
output layer indicates whether the input tile is considered to be
corroded or intact. Raw images are cropped into tiles, which are in
turnmanually labeled and split into training, validation and test set.
After training the ResNet on the training set, predictions are made
for tiles coming from the test set. The heatmap of Fig. 5 visualizes
the tile predictions made by the ResNet, with red-colored and
green-colored tiles predicted as corroded and intact, respectively.

The posed research question is to classify images as corroded or
intact, whereas a ResNet provides predictions for fragments of the
image. To solve the original problem, a rule for image classification
can be defined by utilizing tile predictions. One classification rule is
to predict the original image as corroded if it contains at least one
tile predicted as corroded. However, such a classification rule is
prone to produce false alarms due to being sensitive to tile pre-
diction errors. Misclassifying a single tile as corroded is sufficient to
produce a false alarm for the original image.

To make corrosion detection for an image less susceptible to its
constituent misclassified tiles, the classification of the image can be
defined by considering the absolute frequency of misclassified tiles.

Let ni be the number of tiles in the i-th image and byðiÞt the prediction

made by the ResNet for tile t in image i. The prediction byðiÞ for image
i is set to

byðiÞ ¼
8><
>:

1; if
Xni

t¼1

byðiÞt > c

0; otherwise

; (1)

assuming that 1 and 0 correspond to presence and absence of
corrosion, and c is a hyper-parameter.

The hyper-parameter c sets a threshold on the count of tiles
predicted as corroded, above which the image consisting of these
corroded tiles is predicted to be corroded itself. This classification
rule has been instigated by training ResNets on tiles. It has been
observed empirically that images with pitting or stress corrosion
cracks tend to contain higher number of corroded tiles than intact
images with fewer (or no) tiles misclassified as corroded.

A value for the hyper-parameter c can be chosen by optimizing a
performance metric on the validation set. More specifically, if

MðfbyðiÞðcÞ : igÞ is a performance metric, viewed as a function of

image predictions fbyðiÞðcÞ : ig dependent on c and made over the
validation set, then c can be estimated by bc ¼
supremumcfMðfbyðiÞðcÞ : igÞg.

The F1 score is a plausible choice of performance metric

MðfbyðiÞðcÞ : igÞ in the corrosion detection ap-plication of this paper,
since it places emphasis on true positives rather than true negatives
and since it can be applied on possibly imbalanced classes of intact
and of corroded images (see the Appendix for the definition of F1
score).

To summarize, the proposed algorithm for detecting whether an
image contains corrosion comprises the following steps:



Fig. 5. Flowchart for classifying tiles using a ResNet. Solid lines represent training steps and dashed lines refer to test steps. Tiles from the test set, stitched back together to display
the image of origin, are colored as red or green depending on whether they have been predicted as corroded or as intact by the ResNet. (For interpretation of the references to color
in this figure legend, the reader is referred to the Web version of this article.)
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1. Run a ResNet on the validation set of tiles to tune hyper-
parameters relevant to training, such as the learning rate for
stochastic gradient descent.

2. Train the ResNet on the training set of tiles.
3. Tune the value of hyperparameter c using the validation set of

tiles. To do so, predict the labels of tiles in the validation set via
the trained ResNet, use these tile predictions to compute the
whole image predictions via equation (1) for various values of c,
and select the value of c that maximizes a performance metric,
such as the prediction accuracy or F1 score.

4. Predict the labels of images in the test set. To do so, predict the
labels of tiles in the test set via the trained ResNet, and use these
tile predictions to compute the whole image predictions via
equation (1) for the value of c obtained at step 3.

As it can be seen from the described algorithm, a new image is
cropped into tiles, its tiles are predicted as corroded or intact via the
trained ResNet, and equation (1) is used for predicting whether the
image is corroded or intact.

In the regulatory guide of the American Society of Mechanical
Engineers (ASME) code cases not approved for use [47], one metric
for canister inspection is based on estimating the areal percent of
the surface that is corroded. The proposed algorithm in this paper
offers a way of quantifying the percent of surface area that is
corroded. More specifically, the count
Pni

t¼1
byðiÞt of tiles predicted as

corroded in equation (1) divided by the total number of tiles per
whole image is a crude estimate of the percent of corroded surface
area per whole image.
2.4. Tuning, training and implementation

This section provides details of hyperparameter tuning, of the
configuration of the training process and of the implementation. To
start with, data augmentation was performed on the training and
validation sets by carrying out random rotations, flips, color shift-
ing, zooming and symmetric warping of the tiled images.

An 18-layer, a 34-layer, and a 50-layer ResNet were employed in
order to validate the discriminative power of the proposed
approach to corrosion detection regardless of the deployed ResNet
architecture (see Ref. [46] for the definitions of ResNet-18, ResNet-
34 and ResNet-50). The last fully connected layer of 1,000 units in
each of these three ResNets was replaced by a fully connected layer
of 2 units. From this point onwards, every reference to ResNet-18,
ResNet-34 and ResNet-50 alludes to the respective ResNets with
modified last layers.

A mock training sessionwith the learning rate finder of [48] was
run on the validation set for each ResNet. The learning rate was



Fig. 6. Diagnostic plots related to ResNet tuning and training. (6a): plot of loss versus learning rate from a mock training session with the learning rate finder of [48]. The training
session was run using ResNet-34 and a batch size of 128. The loss has the sharpest downward slope in the vicinity of 5$10�4, so the learning rate interval [10�6, 5$10�4] is a plausible
choice for discriminative layer training. (6b): plot of F1 score versus hyper-parameter c. Tiled image predictions were made on the validation set via ResNet-34 using a batch size of
128. The tiled image predictions were then used for making whole image predictions via equation (1) for c ¼ 1, 2,…, 30. The F1 score was computed for the image predictions arising
from each value of c. bc ¼ 13 is chosen as the threshold value maximizing the F1 score (see red-colored point). (6c) and (6d): plots of training and validation loss versus epoch
obtained by training ResNet-34 with the one-cycle policy of [49] for batch sizes of 32 and of 128, respectively. The two batch sizes yield similar training and validation loss curves.
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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tuned across all layers, since the ResNet backbone was not kept
frozen. Fig. 6a displays an example of a loss curve plotted against
the range of learning rates used in a mock run of the learning rate
finder on ResNet-34. According to Fig. 6a, the loss curve has a
downward slope in the interval [10�6, 10�1]. Following common
practice, a value approximately in the middle of the sharpest
downward slope, such as 5$10�4, is chosen as the learning rate
upper bound.

After tuning the learning rate, discriminative layer training us-
ing the one-cycle policy of [49] was performed. Discriminative layer
training refers to the process of training with different learning
rates across layers. On the basis of Fig. 6a, the learning rate range for
discriminative layer training was set to the interval [10�6, 5$10�4].
This way, the learning rates for the first and last layer of each ResNet
were set to 10�6 and to 5$10�4 during training, respectively, with
the intermediate layers having learning rates logarithmically
distributed between 10�6 and 5$10�4.

Each ResNetwas trained by running the one-cycle policy [49] for
50 epochs. Training was run for batch sizes of 32, 64, 128 and 256
for each of the three ResNets. The training and validation loss
curves were similar across different batch sizes and different
ResNets. For example, Fig. 6c and 6d shows a similar pattern of
training and validation loss curves for ResNet-34, and for respective
batch sizes of 32 and 128.

The threshold c of equation (1) for image classification was
selected by maximizing the F1 score of image predictions on the
validation set (see Section 3 for more details about the F1 score).
Fig. 6b provides an example of an F1 score curve, showing F1 values
for a range of c values. It is noted that threshold c is selected to
maximize the F1 score and does not translate to a corrosion
threshold. Whether an image is corroded or not is determined by
acceptance criteria mandated by acceptable industry standards.
However, different acceptance criteria will result in training sets
with different corroded/intact partitions and subsequently in
different values of threshold c.
A Python package, called nccd, accompanies this paper. It is

publicly available at
https://github.com/papamarkou/nccd
and it comes with an example of running the proposed algo-

rithm. ResNet training and tile predictions in nccd make use of the
fastai library. The nccd package implements the classification rule
of equation (1) for making image predictions based on tile pre-
dictions. More generally, nccd automates the process of running the
proposed algorithm. The EPRI data used in the analysis are pro-
prietary, therefore they are not available in the public domain.

Simulations were run on an NVIDIA Tesla V100 GPU of a DGX-1
server at the CADES Cloud at Oak Ridge National Laboratory (ORNL).
The training runtime for 50 epochs using the one-cycle policy
varied from 40 min for ResNet-18 to 115 min for ResNet-50.
3. Results

This section provides performance metrics on the basis of tiled
image predictions made by the three ResNets and on the basis of
whole image predictions made via equation (1). All predictions
were made on the test set. Tables 2a and 2b shows numerical
performance metrics, namely true negatives (TN; intact correctly
predicted as intact), false positives (FP; intact wrongly predicted as
corroded), false negatives (FN; corroded wrongly predicted as
intact), true positives (TP; corroded correctly predicted as
corroded), true positive rates (TPR), false positive rates (FPR), pos-
itive predictive values (PPV) and F1 scores. The definition of these
metrics are available in the Appendix. Moreover, Fig. 7 displays
visual performance metrics, namely receiver operating character-
istic (ROC) curves, which are plots of TPR against FPR.

Tiled image predictions (on the test set) are similar across
different batch sizes. For example, the ROC curves for ResNet-34
based on four batch sizes (32, 64, 128 and 256) are nearly



Table 2a
Performance metrics for assessing the quality of classification of tiled images (2a)
and of whole images (2b) as corroded or intact using three ResNets and a batch size
of 128. The first, second and third column in each table correspond to ResNet-18,
ResNet-34 and ResNet-50. TN, FP, FN, TP, TPR, FPR, PPV and F1 stand for true
negative, false positive, false negative, true positive, true positive rate, false positive
rate, positive predictive value and F1 score, respectively. The performance metrics
were evaluated on the basis of tiled and whole image predictions made on the test
set.

Metrics CNN
ResNet-18 ResNet-34 ResNet-50

TN 7004 6936 6938
FP 138 206 204
FN 205 143 190
TP 619 681 634
TPR 0.7512 0.8265 0.7694
FPR 0.0193 0.0288 0.0286
PPV 0.8177 0.7678 0.7566
F1 0.7830 0.7960 0.7629

Performance metrics for tiled images.

Table 2b
Performance metrics for assessing the quality of classification of tiled images (2a)
and of whole images (2b) as corroded or intact using three ResNets and a batch size
of 128. The first, second and third column in each table correspond to ResNet-18,
ResNet-34 and ResNet-50. TN, FP, FN, TP, TPR, FPR, PPV and F1 stand for true
negative, false positive, false negative, true positive, true positive rate, false positive
rate, positive predictive value and F1 score, respectively. The performance metrics
were evaluated on the basis of tiled and whole image predictions made on the test
set.

Metrics CNN
ResNet-18 ResNet-34 ResNet-50

TN 16 15 14
FP 0 1 2
FN 1 1 0
TP 16 16 17
TPR 0.9412 0.9412 1.0000
FPR 0.0000 0.0625 0.1250
PPV 1.0000 0.9412 0.8950
F1 0.9697 0.9412 0.9444

Performance metrics for whole images.
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identical (Fig. 7a). As another example, the ROC curves across the
three ResNets for batch size equal to 128 are nearly identical
(Fig. 7b). It is reminded that the training and validation loss curves
(based on the training and validation set) are also similar across
different batch sizes (see Fig. 6c and 6d). In summary, neither the
choice of ResNet nor the choice of batch size seem to have a drastic
effect on tiled image predictive capacity. On the other hand, a batch
size of 128 yields more accurate whole image predictions (on the
EPRI test set) than batch sizes of 32, 64 and 256. For this reason, the
metrics of Tables 2a and 2b pertain to predictions based on a batch
size of 128.
Fig. 7. ROC curves are nearly identical for different ResNets and for diffe
As explained in Section 2.3, the F1 score is preferred for tuning
hyper-parameter c in equation (1). As seen in Table 2a, the F1 scores
of tile predictions for ResNet-18, ResNet-34 and ResNet-50 are
78.30%, 79.60% and 76.29%. The probabilities of corrosion detection
(TPR) correspond to 75.12%, 82.65% and 76.94%, while the proba-
bilities of false alarms (FPR) correspond to 1.93%, 2.88% and 2.86%
for ResNet-18, ResNet-34 and ResNet-50. Overall, tiled image pre-
dictive performance is similar across the three ResNet architectures
according to Table 2a.

Moreover, the image classification rule based on equation (1) is
not sensitive to the choice of ResNet architecture according to
Table 2b. More specifically and at whole image-level, ResNet-18,
ResNet-34 and ResNet-50 combined with the image classifier of
equation (1) yield F1 scores of 96.97%, 94.12% and 94.44%, proba-
bilities of corrosion detection (TPR) of 94.12%, 94.12% and 100%, and
probabilities of false alarm (FPR) of 0%, 6.25% and 12.50%. Thereby,
Table 2b provides empirical evidence that the image classifier of
equation (1) is not sensitive to tile misclassification errors or to the
choice of ResNet architecture for tile classification.

So, this paper provides a first empirical indication that the al-
gorithm of Section 2.3 can be used to automatically detect corrosion
in the test images provided by EPRI. At the same time, it is
emphasized that the EPRI test set consists of 33 images only (see
Table 1a). A larger dataset would help to train, tune and test the
proposed approach more extensively in the future. Moreover,
datasets collected from alternative sites would help to assess the
capacity of the proposed approach to identify corrosion on spent
fuel storage canisters with varying characteristics or from varying
locations.

A graphical user interface (GUI) was developed using PyQt to
automate the process and analyze images. The GUI provides a
colormap that highlights any identified corroded and intact areas
within the image and provides additional information to the
operator including percentage of image that is corroded. Fig. 8
demonstrates GUI usage via an image classified as corroded. It is
noted that this image was particularly challenging with a lot of
artifacts (shadows, scratches, etc.). However, the proposed deep
learning approach captured correctly all the corroded areas (high-
lighted with yellow color).
4. Discussion and conclusions

This paper proposes an image classification algorithm based on
deep learning for detecting corrosion, including discoloration,
pitting, and stress corrosion cracks, in stainless steel canisters.
Despite the small sample size of 166 EPRI images, the algorithm
attains high F1 score for whole images on the EPRI test set and
therefore encourages further experimentation and investigation
towards future deployment as an operator decision support system
intended to augment existing human inspector capabilities for
rent batch sizes. All ROC curves were generated using the test set.



Fig. 8. Visualization of an image identified as corroded using the GUI. The corroded areas are highlighted using yellow color and intact areas using green color. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web version of this article.)

T. Papamarkou et al. / Nuclear Engineering and Technology 53 (2021) 657e665664
detecting corrosion in used nuclear fuel canisters. The proposed
algorithm trains a ResNet on a training set of tiles, tunes the value of
hyper-parameter c using the validation set of tiles, and then uses
tile predictions to compute whole image predictions. The proposed
image classifier is highly performing on the small EPRI test set of 33
images and not sensitive to tile misclassification errors or to the
choice of ResNet architecture for tile classification. Thus, the pro-
posed algorithm holds promise for addressing the research ques-
tion of automatically detecting corrosion in used fuel nuclear
canisters.

Future work includes a more exhaustive testing by acquiring a
larger dataset of images from a diverse collection of corroded and
intact samples and by allowing for class imbalances at whole
image-level. Variations of the classification rule of equation (1) can
be considered, for example by introducing sliding window tech-
niques across tiles to take into account spatial information in tile
predictions along with tile prediction counts. Another future di-
rection would be to attempt pixel-wise labelling instead of crop-
ping into 256 � 256 tiles, followed by a pixel-centric classification
rule instead of the tile-centric classification rule of equation (1).
Such an approach would require of an upfront investment to
annotate images pixel-wise. A preliminary attempt to assess the
proposed approach using video input instead of image input has
been made, which takes about 15 s for ResNet training per input
file. To enable real-time usage with video input, future work will
use optical flows. Video files are not efficient for solving the
corrosion classification problem because consecutive frames
contain redundant information as the camera pans. Optical flows
eliminate this issue and allow for the entire canister to be visual-
ized by a single image. Thus, the proposed algorithm will be eval-
uated on images derived from optical flows.
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Appendix (definition of performance metrics)

A tiled image prediction or an original image prediction is
characterized as positive if it is corroded (labeled as 1), and as
negative if it is intact (labeled as 0). TPR is defined as

TPR¼ TP=ðTPþ FNÞ;
it provides the probability of detection of corroded images, and

it is therefore crucial for assessing corrosion detection in nuclear
canisters. FPR is defined as

FPR ¼ FP=ðFPþ TNÞ;
and gives the probability of false alarm. PPV is defined as

PPV ¼ TP=ðTPþ FPÞ;
and is particularly useful in the context of tile predictions, since

the classes of intact and of corroded tiles are imbalanced with a
sample size ratio of 37,762/4,957z 7/1. (see Table 1b). The F1 score
is defined as

F1 ¼ 2� PPV � TPR=ðPPV þ TPRÞ;
and it is the harmonic mean of FPR and PPV. A ROC curve is a
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plot of TPR against FPR.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.net.2020.07.020.
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