• Title/Summary/Keyword: correlated noise

Search Result 259, Processing Time 0.035 seconds

Quantitative Measurement of the Glottal Area Waveform(GAW) in Unilateral Vocal Fold Paralysis (편측성대마비환자에서의 성문면적파형(Glottal Area Waveform)의 정량적 측정)

  • 최홍식;김명상;최재영;안성윤;이세영;홍정표
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.9 no.1
    • /
    • pp.71-78
    • /
    • 1998
  • Type Ⅰ thyuroplasty in conjunction with arytenoid adduction is one of the excellent techniques in the treatment of unilateral vocal fold paralysis. But perioperative objective evaluation of the patients is difficult. With the development of the videostroboscopy and image analysis program, we could quantify the Glottal Area Waveform(GAW) in patients with unilateral vocal fold paralysis and investigated the relationship between the glottal area and aerodynamic and acoustic parameters. Eight female patients who were performed type Ⅰ thyroplasty in conjunction with arytenoid adduction and 5 females with normal vocal function were involved in this study. Preoperative and postoperative videostroboscopy and vocal function study wire performed. GAW was analysed quantitatively with image analysis program (Kay Stroboscope Image analysis, KSIP) Peak Glottal Area(PGA), Baseline Offset(BO), and Closing Phase(CP) were increased in patients with unilateral vocal fold paralysis and they were reduced after the operation. Mean flow Rate (MFR) was well correlated with the PGA in normal control group and unilateral vocal fold paralysis patients. Noise to harmonic ratio(NHR) was correlated with PGA only in preoperative unilateral vocal fold paralysis patients. In conclusion quantitative measurement of the GAW is useful method in evaluation of unilateral vocal f31d paralysis patients.

  • PDF

A comparative study of feature screening methods for ultrahigh dimensional multiclass classification (초고차원 다범주분류를 위한 변수선별 방법 비교 연구)

  • Lee, Kyungeun;Kim, Kyoung Hee;Shin, Seung Jun
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.5
    • /
    • pp.793-808
    • /
    • 2017
  • We compare various variable screening methods on multiclass classification problems when the data is ultrahigh-dimensional. Two different approaches were considered: (1) pairwise extension from binary classification via one versus one or one versus rest comparisons and (2) direct classification of multiclass responses. We conducted extensive simulation studies under different conditions: heavy tailed explanatory variables, correlated signal and noise variables, correlated joint distributions but uncorrelated marginals, and unbalanced response variables. We then analyzed real data to examine the performance of the methods. The results showed that model-free methods perform better for multiclass classification problems as well as binary ones.

Performance Analysis of Precoded MIMO MMSE Receivers in Transmit-Correlated Rayleigh Channels (송신 상관된 레일리 채널에서 프리코더를 갖는 MIMO MMSE 수신기의 성능 분석)

  • Kim, Wonsop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.7
    • /
    • pp.552-559
    • /
    • 2013
  • In this paper, the multiple-input multiple-output (MIMO) system with a precoder is considered in the transmit-correlated Rayleigh channels. We specifically target the MIMO system employing the minimum mean square error receivers. Based on random matrix theory, we first present a direct and generalized formulation for deriving a probability density function (PDF) of the signal-to-interference-plus-noise ratio (SINR). Then, we derive the accurate closed-form SINR PDFs for a small number of transmit and receive antennas. Based on the SINR PDFs, tight closed-form approximations of the symbol error rate (SER) are derived. Our analysis suggests that the SER approximations can be used to accurately estimate the error probabilities or as a useful tool for the system design.

Additional degree of freedom in phased-MIMO radar signal design using space-time codes

  • Vahdani, Roholah;Bizaki, Hossein Khaleghi;Joshaghani, Mohsen Fallah
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.640-649
    • /
    • 2021
  • In this paper, an additional degree of freedom in phased multi-input multi-output (phased-MIMO) radar with any arbitrary desired covariance matrix is proposed using space-time codes. By using the proposed method, any desired transmit covariance matrix in MIMO radar (phased-MIMO radars) can be realized by employing fully correlated base waveforms such as phased-array radars and simply extending them to different time slots with predesigned phases and amplitudes. In the proposed method, the transmit covariance matrix depends on the base waveform and space-time codes. For simplicity, a base waveform can be selected arbitrarily (ie, all base waveforms can be fully correlated, similar to phased-array radars). Therefore, any desired covariance matrix can be achieved by using a very simple phased-array structure and space-time code in the transmitter. The main advantage of the proposed scheme is that it does not require diverse uncorrelated waveforms. This considerably reduces transmitter hardware and software complexity and cost. One the receiver side, multiple signals can be analyzed jointly in the time and space domains to improve the signal-to-interference-plus-noise ratio.

The Effect of An Increase of Closed Quotient on Improvement of Voice Quality after Type I Thyroplasty in Patients with Unilateral Vocal Cord Paralysis (일측 성대마비 환자에서 성대내전술 후 성대접촉율의 증가가 음질 개선에 미치는 영향)

  • Kim, Han-Su;Choi, Seung-Hee;Lim, Jae-Yol;Choi, Hong-Shik
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.15 no.1
    • /
    • pp.16-20
    • /
    • 2004
  • Purpose : To assess perceptual, acoustic and aerodynamic measure of voice quality in patients with unilateral vocal cord paralysis before and after type I thyroplasty. Methods : The clinical records of patients operated type I thyroplasty in the Departement of otorhinoalryngolgy, Yongdong Severance hospital from November 2001 to November 2003 were reviewed. All patients uderwent a vocal function evaluation including perceptual, acoustic and aerodynamic measures of voice preoperative and on $60^{th}$ postoperative day. The perceptual and acoustic measures were obtained from recording of patients' reading a 'Sanchak' passage. The perceptual evaluation was performed by 2 speech pathologist using a 4-point rating scale. Acoustic parameters(voice range profile low(RAL), voice range profile high(RAH), average fundamental frequency(AFX), closed quotient, harmonic to noise ratio, jitter and shimmer) were investigated by Lx speech studio. Mean flow rate(MFR), subglottic pressure(Psub) and intensity were measured using the Phonatory function analyzer. The maximum phonation time was also measured. The data were statistically analyzed. A paired t-test (p<0.1) was used to compare preoperative and postoperative results. And multiple regression test was used to find which parameter was most correlated to improvement of postoperative voice quality. Results : Among aerodynamic parameters, Psub $(88.11mmH_2O{\rightarrow}58.7mmH_2O)$, MPT(7.87sec${\rightarrow}$12.53sec), MFR (359.8ml/sec${\rightarrow}$161.06ml/sec) were statistically improved. AFx(205.5Hz${\rightarrow}$163.27Hz), AQx(23.9%${\rightarrow}$48.3%), RAL, RAH. Jotter and shimmer were improved. In multiple regression test, AFx and AQx was noted as the two meost correlated parameters to improvement of postoperative breathiness. But general grade of voice quality was more correlated to Psub and shimmer. Conclusion : Vocal fold medialization procedures effectively reduce glottic gap. Increasing of contact area of both vocal folds induced improvement in aerodynamic parameters and leaded stabilizing of vocal fold vibration. That effect results in improvement in acoustic parameters (shimmer, jitter, signal-to-noise ratio, voice range profile) and voice quality.

  • PDF

Stochastic response of suspension bridges for various spatial variability models

  • Adanur, Suleyman;Altunisik, Ahmet C.;Soyluk, Kurtulus;Dumanoglu, A. Aydin
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1001-1018
    • /
    • 2016
  • The purpose of this paper is to compare the structural responses obtained from the stochastic analysis of a suspension bridge subjected to uniform and partially correlated seismic ground motions, using different spatial correlation functions commonly used in the earthquake engineering. The spatial correlation function employed in this study consists of a term that characterizes the loss of coherency. To account for the spatial variability of ground motions, the widely used four loss of coherency models in the literature has been taken into account in this study. Because each of these models has its own characteristics, it is intended to determine the sensitivity of a suspension bridge due to these losses of coherency models which represent the spatial variability of ground motions. Bosporus Suspension Bridge connects Europe to Asia in Istanbul is selected as a numerical example. The bridge has steel towers that are flexible, inclined hangers and a steel box-deck of 1074 m main span, with side spans of 231 and 255 m on the European and Asian sides, respectively. For the ground motion the filtered white noise model is considered and applied in the vertical direction, the intensity parameter of this model is obtained by using the S16E component of Pacoima Dam record of 1971 San Fernando earthquake. An analytically simple model called as filtered white noise ground motion model is chosen to represent the earthquake ground motion. When compared with the uniform ground motion case, the results obtained from the spatial variability models with partial correlation outline the necessity to include the spatial variability of ground motions in the stochastic dynamic analysis of suspension bridges. It is observed that while the largest response values are obtained for the model proposed by Harichandran and Vanmarcke, the model proposed by Uscinski produces the smallest responses among the considered partially correlated ground motion models. The response values obtained from the uniform ground motion case are usually smaller than those of the responses obtained from the partially correlated ground motion cases. While the response values at the flexible parts of the bridge are totally dominated by the dynamic component, the pseudo-static component also has significant contributions for the response values at the rigid parts of the bridge. The results also show the consistency of the spatial variability models, which have different characteristics, considered in this study.

Antenna Selection and Shuffling for DSTTD Systems with Correlated Transmit-Antenna (송신 안테나 사이에 상관관계가 있는 DSTTD 시스템에서 안테나 선택과 뒤섞는 기법)

  • Joung, Jin-Gon;Jeong, Eui-Rim;Lee, Yong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.767-774
    • /
    • 2007
  • A new transmit antenna selection and shuffling($AS^2$) method for spatially correlated double space time transmit diversity(DSTTD) systems is proposed. The proposed method allows dumb antennas and the superposition of multiple signals at the same transmit antenna, whereas the conventional methods consider the antenna shuffling(AS) only. According to the simulation result, the proposed method provides a 1.8 dB signal-to-noise ratio(SNR) gain over the conventional methods for spatially correlated transmit antennas. Although the number of candidates for $AS^2$ is much higher than that of AS, it is found that the number of candidates for $AS^2$ can be reduced to 36 by using the characteristics and properties of preprocessing matrices, and among them, only 6 candidates are almost always chosen. Next, we empirically compare the bit-error-rate (BER) performance of the proposed method with the conventional spatial multiplexing(SM) technique with antenna selection. Simulation results show that the proposed method outperforms the SM technique.

Design of a CMOS Image Sensor Based on a 10-bit Two-Step Single-Slope ADC (10-bit Two-Step Single Slope A/D 변환기를 이용한 고속 CMOS Image Sensor의 설계)

  • Hwang, Inkyung;Kim, Daeyun;Song, Minkyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.64-69
    • /
    • 2013
  • In this paper, a high-speed CMOS Image Sensor (CIS) based on a 10-bit two-step single-slope A/D converter is proposed. The A/D converter is composed of both a 5-bit coarse ADC and a 6-bit fine ADC, and the conversion speed is 10 times faster than that of the single-slope A/D converter. In order to have a small noise characteristics, further, a Digital Correlated Double Sampling(D-CDS) is also discussed. The proposed A/D converter has been fabricated with 0.13um 1-poly 4-metal CIS process, and it has a QVGA($320{\times}240$) resolution. The fabricated chip size is $5mm{\times}3mm$, and the power consumption is about 35mW at 3.3V supply voltage. The measured conversion speed is 10us, and the frame rate is 220 frames/s.

Virtual Metrology for predicting $SiO_2$ Etch Rate Using Optical Emission Spectroscopy Data

  • Kim, Boom-Soo;Kang, Tae-Yoon;Chun, Sang-Hyun;Son, Seung-Nam;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.464-464
    • /
    • 2010
  • A few years ago, for maintaining high stability and production yield of production equipment in a semiconductor fab, on-line monitoring of wafers is required, so that semiconductor manufacturers are investigating a software based process controlling scheme known as virtual metrology (VM). As semiconductor technology develops, the cost of fabrication tool/facility has reached its budget limit, and reducing metrology cost can obviously help to keep semiconductor manufacturing cost. By virtue of prediction, VM enables wafer-level control (or even down to site level), reduces within-lot variability, and increases process capability, $C_{pk}$. In this research, we have practiced VM on $SiO_2$ etch rate with optical emission spectroscopy(OES) data acquired in-situ while the process parameters are simultaneously correlated. To build process model of $SiO_2$ via, we first performed a series of etch runs according to the statistically designed experiment, called design of experiments (DOE). OES data are automatically logged with etch rate, and some OES spectra that correlated with $SiO_2$ etch rate is selected. Once the feature of OES data is selected, the preprocessed OES spectra is then used for in-situ sensor based VM modeling. ICP-RIE using 葰.56MHz, manufactured by Plasmart, Ltd. is employed in this experiment, and single fiber-optic attached for in-situ OES data acquisition. Before applying statistical feature selection, empirical feature selection of OES data is initially performed in order not to fall in a statistical misleading, which causes from random noise or large variation of insignificantly correlated responses with process itself. The accuracy of the proposed VM is still need to be developed in order to successfully replace the existing metrology, but it is no doubt that VM can support engineering decision of "go or not go" in the consecutive processing step.

  • PDF

A FUZZY NEURAL NETWORK-BASED DECISION OF ROAD IMAGE QUALITY FOR THE EXTRACTION OF LANE-RELATED INFORMATION

  • YI U. K.;LEE J. W.;BAEK K. R.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.53-63
    • /
    • 2005
  • We propose a fuzzy neural network (FNN) theory capable of deciding the quality of a road image prior to extracting lane-related information. The accuracy of lane-related information obtained by image processing depends on the quality of the raw images, which can be classified as good or bad according to how visible the lane marks on the images are. Enhancing the accuracy of the information by an image-processing algorithm is limited due to noise corruption which makes image processing difficult. The FNN, on the other hand, decides whether road images are good or bad with respect to the degree of noise corruption. A cumulative distribution function (CDF), a function of edge histogram, is utilized to extract input parameters from the FNN according to the fact that the shape of the CDF is deeply correlated to the road image quality. A suitability analysis shows that this deep correlation exists between the parameters and the image quality. The input pattern vector of the FNN consists of nine parameters in which eight parameters are from the CDF and one is from the intensity distribution of raw images. Experimental results showed that the proposed FNN system was quite successful. We carried out simulations with real images taken in various lighting and weather conditions, and obtained successful decision-making about $99\%$ of the time.