• Title/Summary/Keyword: corner-case

Search Result 190, Processing Time 0.028 seconds

A Study on the Forming of a Tetragonal Cup with the Acute and Obtuse Corners (모서리가 예각과 둔각인 4각용기의 성형에 관한 연구)

  • 김진무;유호영;송봉찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.148-155
    • /
    • 1998
  • A trapexoidal cup of corner angles, 72。 and 102。 has been drawn to 45mm in depth. Strains on the corner flange with an acute corner angle have been compared with those on the corner flange of a square cup and those on the corner flange with an obtuse corner angle respectively. The result has shown that the strains of an acute corner angle have been relieved more than those of a square cup in case of the same conditions except of the corner angles.

A Study on the Field Application to Axial Stiffness Applying Corner Strut of Retainingwall Using Numerical Analysis (수치해석을 이용한 흙막이벽체의 사보강버팀보에 적용하는 축강성에 대한 현장 적용성 연구)

  • Lee, Yeong-Jin;Lee, Soung-Kyu;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.39-48
    • /
    • 2022
  • Unlike the horizontal strut, the corner strut causes bending behavior by the installation angle when soil pressure occurs, so there is a limit to its application as a elasto plastic method that requires only the axial stiffness of struts. Therefore, this study attempted to approach a method of modifying axial stiffness data to present an analysis method for corner struts in elasto plastic method, and linear elasticity analysis was used for this. And, through Linear elasticity analysis, axial stiffness data for corner struts installed at the actual site were calculated. The behavior of the retainingwall was confirmed by applying the calculated axial stiffness data of corner struts to elasto plastic method, and its applicability was evaluated by comparing it with the measurement results and the finite element analysis results. As a result of the study, when the axial stiffness data of the corner struts was applied using Linear elasticity analysis(Case 1, Case 3), the axial stiffness data decreased to 9% to 17% compared to the general method of applying the axial stiffness of the struts(Case 2, Case 4), and the displacement of the retainingwall increased to 25.33% to 64.42%. Comparing this result with the measurement results, when Linear elasticity analysis was used(Case 1, Case 3), the behavior of the retainingwall during the elasto plastic method was better shown.

Effect of Corner Exit Speed on the Time to Go Down a Straight (코너 출구속도가 직선주로 주행 소요시간에 미치는 영향)

  • 장성국
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.141-146
    • /
    • 2003
  • This paper calculates the elapsed time to go down a straight as a function of the corner exit speed and considers air resistance, rolling resistance, and slope resistance to figure out the force for forward acceleration. In a car racing, the most critical comer in a course is the one before the longest straight. A driver can lose a quite amount of time by taking a bad line in a corner. Taking a bad line also causes poor comer exit speed which in turn costs more elapsed time to go down a straight. The results are not so dramatic as in the case of cornering but are showing why one should take the correct corner racing line to get the maximum exit speed. Also, for the case of drag race, the elapsed time to go 1/4 mile is calculated.

Study on the Impact Analysis of Front Loader for Tractor (트랙터용 프론트 로더의 충격해석에 관한 연구)

  • Lim, Gi-Soo;Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5051-5059
    • /
    • 2015
  • Structural behaviour of the front loader for an agricultural tractor was analyzed for three impact test conditions: drop and catch, corner pull, and corner push. Rigid-body dynamic, transient structural, and static structural analyses were conducted using a commercial finite element software. Analysis of the drop and catch test dealt with the case that the bucket located at the maximum elevation was dropped and catched through three steps. Analysis of the corner pull test dealt with the case that the bucket constrained to the ground by a chain at its corner was raised suddenly. Analysis of the corner push test dealt with the case that the corner of the bucket collided with an obstacle. Results of analyses of the three test conditions showed that maximum stress occurs at the geometrically discontinuous location in the mount and is caused from local stress concentration. Results of the present research can be utilized as a guideline to achieve more reliable and safe structural design of the front loaders.

An investigation of the behavior in the corner crack propagation of Al-Alloy by the plane bending fatigue (평면 굽힘 피로하중에 의한 알루미늄 합금재의 모서리 균열 전파거동에 관한 연구)

  • 김영식;김영종
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.49-63
    • /
    • 1984
  • The 5086-H116 Al-Alloy plate specimens having an edge through-thickness notch were investigated to find out the characteristics of the corner crack propagation by the plane bending fatigue. The experiments were also carried out in order to clarify the change of the corner crack propagation behaviour due to the various materials and their thicknesses. In addition, the retardation effect of overload on the corner crack propagation was quantatively studied. Main results obtained are as follows; 1. In the case of estimating the crack propagation rate of the corner crack, it is more reasonable to consider the growth rate of fracture surface area than that of crack length. 2. The shape of the corner crack growing in the plane plate under the bending fatigue can be estimated. 3. The crack propagation rate increases with the increasing of the thickness and the decreasing of the Young's modulus of materials. 4. Regardless of a thickness and kind of materials of specimen, the characteristics of the corner crack propagation can be concluded. 5. The retardation effect of overload is distinct in the corner crack propagation.

  • PDF

A Study on the Corner Filling in the Drawing of the Rectangular Rod (사각재 인발 공정의 코너채움에 관한 연구)

  • Kim Y. C.;Kim Y. S.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.05a
    • /
    • pp.56-59
    • /
    • 1999
  • In the present study, in order to investigate the effect of the corner filling in the drawing of the rectangular rod from a round bar, the drawing of the square rod from a round bar has been simulated by using rigid-plastic finite element method and artificial neural network has been introduced to reduce the number of simulation. The experimental investigation has been also implemented to verify the efficiency of the application of results of present and previous study. According to the results of present and pervious study, the combination of semi-die angle gives a great effect on the corner filling in case of the irregular shaped drawing process, but, in case of the regular shaped drawing process, the main process variable on the corner filling is reduction in area.

  • PDF

The Behavior of Retention Wall By 3-D Finite Element Method (3차원 유한요소해석에 의한 흙막이 벽체의 거동특성)

  • 이진구;장서만;전성곤;이종규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.347-354
    • /
    • 2001
  • In this study, 3-D FEM analysis are carried out to investigate the effect of the corners and re-entrant corners which can't be analysed by 2-D analysis. The excavation shape is re-entrant type conditions. The wall displacement, earth pressure and effectiveness of the corner struts are investigated in the re-entrant case, The 3D analysis are peformed to evaluate the effect of various factors, such as re-entrant corner size, excavation depth, and presence of struts. The wall displacement and earth pressures are influenced the size of re-entrant corner. Therefore, the effect of re-entrant corner should be considered in the evaluation of the earth pressure and displacement of the corners. Finally, strut-support systems are not effective at the re-entrant corner.

  • PDF

A Study on the Corner Filling in the Drawing of Quadrangle Rod from Round Bar (원형봉에서 사각재 인발 공정의 코너 채움에 관한 연구)

  • 김용철;김동진;김병민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.143-152
    • /
    • 2000
  • The comer filling in shaped drawing process is an important characteristic, unlike the round drawing. It has also influence on the dimensional accuracy of the product. In this study, therefore, the shaped drawing process has been simulated by the three dimensional rigid-plastic finite element method in order to investigate the effect of process variables such as reduction in area and semi-die angle to the corner filling. The artificial neural network has also been introduced to reduce the number of simulations. To verify the results of simulations, experiments have been performed on the real industrial products. According to the results, the main process variable on the corner filling is the combination of semi-die angle in the irregular shaped drawing processes, but in the case of regular shaped drawing processes, reduction in area has great influence on the corner filling.

  • PDF

The Visualization of the Flowfield around Square Prism Having Fences Using the PIV (PIV를 이용한 펜스를 가진 정방형주 주위의 유동장 가시화)

  • Ro, Ki-Deok;Kim, Kwang-Seok;Oh, Se-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.94-99
    • /
    • 2008
  • The characteristics of the flowfield of a square prism having fences on the corner was investigated by the PIV. Strouhal numbers, velocity vectors and velocity profiles around the square prism were observed at various positions of the fences, and Reynolds number of $Re=0.6{\times}10^4{\sim}1.0{\times}10^4$. As the results in case of the prism having fences the Strouhal numbers were all smaller than in case of the prototype prism. In case of the prism having vertical fences on the front corners the concentrated intensity of the vorticity was the strongest and the size of separated shear layer was the largest. While in case of the prism having vertical fences on the rear corners the concentrated intensity of the vorticity was the weakest and the size of separated shear layer was the smallest. Also in this case, the flow separated in front corner was reattached around the rear corner and made circulation.

Lessons Learned from Failure of Geogrid-Reinforced Segmental Retaining Wall (블록식 보강토 옹벽의 하자발생 사례 분석)

  • 신은철;오영인;김종인
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.329-336
    • /
    • 2001
  • The numbers of geogrid-reinforced walls are widely used in Korea. This papers present the results of two failure case histories of geogrid-reinforced segmental retaining walls. The geological background of the construction sites, detailed construction sequences, and the amount of rainfall were examined. The failure of these reinforced walls are caused by the improper drainage system and foundation treatment, too sharpened curvature of corner work, and too high height of wall.

  • PDF