• Title/Summary/Keyword: corner point detection

Search Result 43, Processing Time 0.03 seconds

A Hybrid Algorithm for Online Location Update using Feature Point Detection for Portable Devices

  • Kim, Jibum;Kim, Inbin;Kwon, Namgu;Park, Heemin;Chae, Jinseok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.600-619
    • /
    • 2015
  • We propose a cost-efficient hybrid algorithm for online location updates that efficiently combines feature point detection with the online trajectory-based sampling algorithm. Our algorithm is designed to minimize the average trajectory error with the minimal number of sample points. The algorithm is composed of 3 steps. First, we choose corner points from the map as sample points because they will most likely cause fewer trajectory errors. By employing the online trajectory sampling algorithm as the second step, our algorithm detects several missing and important sample points to prevent unwanted trajectory errors. The final step improves cost efficiency by eliminating redundant sample points on straight paths. We evaluate the proposed algorithm with real GPS trajectory data for various bus routes and compare our algorithm with the existing one. Simulation results show that our algorithm decreases the average trajectory error 28% compared to the existing one. In terms of cost efficiency, simulation results show that our algorithm is 29% more cost efficient than the existing one with real GPS trajectory data.

Distinct Point Detection : Forstner Interest Operator

  • Cho, Woo-Sug
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.299-307
    • /
    • 1995
  • The extraction of distinct points such as corner points and circular features is a basic procedure in digital photogrammetry and computer vision. This paper describes the extraction of image features from the raw images (gray value images), especially Forstner interest corner points. The mathematical model of the Forstner interest operator as well as the behavior in the presence of noise are investigated. Experiments with real images prove the feasibility of the Forstner interest operator in the field of Digital Photogrammetry.

  • PDF

Line Edge-Based Type-Specific Corner Points Extraction for the Analysis of Table Form Document Structure (표 서식 문서의 구조 분석을 위한 선분 에지 기반의 유형별 꼭짓점 검출)

  • Jung, Jae-young
    • Journal of Digital Contents Society
    • /
    • v.15 no.2
    • /
    • pp.209-217
    • /
    • 2014
  • It is very important to classify a lot of table-form documents into the same type of classes or to extract information filled in the template automatically. For these, it is necessary to accurately analyze table-form structure. This paper proposes an algorithm to extract corner points based on line edge segments and to classify the type of junction from table-form images. The algorithm preprocesses image through binarization, skew correction, deletion of isolated small area of black color because that they are probably generated by noises.. And then, it processes detections of edge block, line edges from a edge block, corner points. The extracted corner points are classified as 9 types of junction based on the combination of horizontal/vertical line edge segments in a block. The proposed method is applied to the several unconstraint document images such as tax form, transaction receipt, ordinary document containing tables, etc. The experimental results show that the performance of point detection is over 99%. Considering that almost corner points make a correspondence pair in the table, the information of type of corner and width of line may be useful to analyse the structure of table-form document.

Accurate Camera Calibration Method for Multiview Stereoscopic Image Acquisition (다중 입체 영상 획득을 위한 정밀 카메라 캘리브레이션 기법)

  • Kim, Jung Hee;Yun, Yeohun;Kim, Junsu;Yun, Kugjin;Cheong, Won-Sik;Kang, Suk-Ju
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.919-927
    • /
    • 2019
  • In this paper, we propose an accurate camera calibration method for acquiring multiview stereoscopic images. Generally, camera calibration is performed by using checkerboard structured patterns. The checkerboard pattern simplifies feature point extraction process and utilizes previously recognized lattice structure, which results in the accurate estimation of relations between the point on 2-dimensional image and the point on 3-dimensional space. Since estimation accuracy of camera parameters is dependent on feature matching, accurate detection of checkerboard corner is crucial. Therefore, in this paper, we propose the method that performs accurate camera calibration method through accurate detection of checkerboard corners. Proposed method detects checkerboard corner candidates by utilizing 1-dimensional gaussian filters with succeeding corner refinement process to remove outliers from corner candidates and accurately detect checkerboard corners in sub-pixel unit. In order to verify the proposed method, we check reprojection errors and camera location estimation results to confirm camera intrinsic parameters and extrinsic parameters estimation accuracy.

Development of Android Smartphone App for Corner Point Feature Extraction using Remote Sensing Image (위성영상정보 기반 코너 포인트 객체 추출 안드로이드 스마트폰 앱 개발)

  • Kang, Sang-Goo;Lee, Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.1
    • /
    • pp.33-41
    • /
    • 2011
  • In the information communication technology, it is world-widely apparent that trend movement from internet web to smartphone app by users demand and developers environment. So it needs kinds of appropriate technological responses from geo-spatial domain regarding this trend. However, most cases in the smartphone app are the map service and location recognition service, and uses of geo-spatial contents are somewhat on the limited level or on the prototype developing stage. In this study, app for extraction of corner point features using geo-spatial imagery and their linkage to database system are developed. Corner extraction is based on Harris algorithm, and all processing modules in database server, application server, and client interface composing app are designed and implemented based on open source. Extracted corner points are applied LOD(Level of Details) process to optimize on display panel. Additional useful function is provided that geo-spatial imagery can be superimposed with the digital map in the same area. It is expected that this app can be utilized to automatic establishment of POI (Point of Interests) or point-based land change detection purposes.

Comparative Study on Feature Extraction Schemes for Feature-based Structural Displacement Measurement (특징점 추출 기법에 따른 구조물 동적 변위 측정 성능에 관한 연구)

  • Junho Gong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.74-82
    • /
    • 2024
  • In this study, feature point detection and displacement measurement performance depending on feature extraction algorithms were compared and analyzed according to environmental changes and target types in the feature point-based displacement measurement algorithm. A three-story frame structure was designed for performance evaluation, and the displacement response of the structure was digitized into FHD (1920×1080) resolution. For performance analysis, the initial measurement distance was set to 10m, and increased up to 40m with an increment of 10m. During the experiments, illuminance was fixed to 450lux or 120lux. The artificial and natural targets mounted on the structure were set as regions of interest and used for feature point detection. Various feature detection algorithms were implemented for performance comparisons. As a result of the feature point detection performance analysis, the Shi-Tomasi corner and KAZE algorithm were found that they were robust to the target type, illuminance change, and increase in measurement distance. The displacement measurement accuracy using those two algorithms was also the highest. However, when using natural targets, the displacement measurement accuracy is lower than that of artificial targets. This indicated the limitation in extracting feature points as the resolution of the natural target decreased as the measurement distance increased.

Interest Point Detection Using Hough Transform and Invariant Patch Feature for Image Retrieval

  • Nishat, Ahmad;An, Young-Eun;Park, Jong-An
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.1
    • /
    • pp.127-135
    • /
    • 2009
  • This paper presents a new technique for corner shape based object retrieval from a database. The proposed feature matrix consists of values obtained through a neighborhood operation of detected corners. This results in a significant small size feature matrix compared to the algorithms using color features and thus is computationally very efficient. The corners have been extracted by finding the intersections of the detected lines found using Hough transform. As the affine transformations preserve the co-linearity of points on a line and their intersection properties, the resulting corner features for image retrieval are robust to affine transformations. Furthermore, the corner features are invariant to noise. It is considered that the proposed algorithm will produce good results in combination with other algorithms in a way of incremental verification for similarity.

  • PDF

Vision Inspection and Correction for DDI Protective Film Attachment

  • Kang, Jin-Su;Kim, Sung-Soo;Lee, Yong-Hwan;Kim, Young-Hyung
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.2
    • /
    • pp.153-166
    • /
    • 2020
  • DDI(Display Driver IC) are used to drive numerous pixels that make up display. For stable driving of DDI, it is necessary to attach a protective film to shield electromagnetic waves. When the protective film is attached, defects often occur if the film is inclined or the center point is not aligned. In order to minimize such defects, an algorithm for correcting the center point and the inclined angle using camera image information is required. This technology detects the corner coordinates of the protective film by image processing in order to correct the positional defects where the protective film is attached. Corner point coordinates are detected using an algorithm, and center point position finds and correction values are calculated using the detected coordinates. LUT (Lookup Table) is used to quickly find out whether the angle is inclined or not. These algorithms were described by Verilog HDL. The method using the existing software requires a memory to store the entire image after processing one image. Since the method proposed in this paper is a method of scanning by adding a line buffer in one scan, it is possible to scan even if only a part of the image is saved after processing one image. Compared to those written in software language, the execution time is shortened, the speed is very fast, and the error is relatively small.

Text Detection in Scene Images Based on Interest Points

  • Nguyen, Minh Hieu;Lee, Gueesang
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.528-537
    • /
    • 2015
  • Text in images is one of the most important cues for understanding a scene. In this paper, we propose a novel approach based on interest points to localize text in natural scene images. The main ideas of this approach are as follows: first we used interest point detection techniques, which extract the corner points of characters and center points of edge connected components, to select candidate regions. Second, these candidate regions were verified by using tensor voting, which is capable of extracting perceptual structures from noisy data. Finally, area, orientation, and aspect ratio were used to filter out non-text regions. The proposed method was tested on the ICDAR 2003 dataset and images of wine labels. The experiment results show the validity of this approach.

Robust pupil detection and gaze tracking under occlusion of eyes

  • Lee, Gyung-Ju;Kim, Jin-Suh;Kim, Gye-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.10
    • /
    • pp.11-19
    • /
    • 2016
  • The size of a display is large, The form becoming various of that do not apply to previous methods of gaze tracking and if setup gaze-track-camera above display, can solve the problem of size or height of display. However, This method can not use of infrared illumination information of reflected cornea using previous methods. In this paper, Robust pupil detecting method for eye's occlusion, corner point of inner eye and center of pupil, and using the face pose information proposes a method for calculating the simply position of the gaze. In the proposed method, capture the frame for gaze tracking that according to position of person transform camera mode of wide or narrow angle. If detect the face exist in field of view(FOV) in wide mode of camera, transform narrow mode of camera calculating position of face. The frame captured in narrow mode of camera include gaze direction information of person in long distance. The method for calculating the gaze direction consist of face pose estimation and gaze direction calculating step. Face pose estimation is estimated by mapping between feature point of detected face and 3D model. To calculate gaze direction the first, perform ellipse detect using splitting from iris edge information of pupil and if occlusion of pupil, estimate position of pupil with deformable template. Then using center of pupil and corner point of inner eye, face pose information calculate gaze position at display. In the experiment, proposed gaze tracking algorithm in this paper solve the constraints that form of a display, to calculate effectively gaze direction of person in the long distance using single camera, demonstrate in experiments by distance.