• Title/Summary/Keyword: core structures

Search Result 1,247, Processing Time 0.057 seconds

Adsorption Characteristics of Furan, Thiophene, and Selenophene on Si(100) Surface

  • Park, Jinwoo;Lee, Han-Koo;Chung, J.W.;Hong, Suklyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.202.2-202.2
    • /
    • 2014
  • We have studied the bonding structures of five membered aromatic ring heterocyclic molecules, such as furan, thiophene, and selenophene, adsorbed on the Si(100) surface at room temperature with density functional theory. Additionally, we have investigated the evolution upon annealing of thiophene and selenophene molecules on the Si(100) surface by the core-level photoemission spectroscopy and near-edge X-ray absorption fine structure (NEXAFS). The core-level-spectra measured at different temperatures are consistently interpreted in terms of various adsorption structures suggested by theoretical calculations. In this study, we found the most suitable structures by theoretical and experimental results considering room temperature and mild thermal annealing.

  • PDF

Eccentric compressive behavior of novel composite walls with T-section

  • Qin, Ying;Chen, Xin;Xi, Wang;Zhu, Xingyu;Chen, Yuanze
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.495-508
    • /
    • 2020
  • Double skin composite walls are alternatives to concrete walls to resist gravity load in structures. The composite action between steel faceplates and concrete core largely depends on the internal mechanical connectors. This paper investigates the structural behavior of novel composite wall system with T section and under combined compressive force and bending moment. The truss connectors are used to bond the steel faceplates to concrete core. Four short specimens were designed and tested under eccentric compression. The influences of the thickness of steel faceplates, the truss spacing, and the thickness of web wall were discussed based on the test results. The N-M interaction curves by AISC 360, Eurocode 4, and CECS 159 were compared with the test data. It was found that AISC 360 provided the most reasonable predictions.

Adsorption Configuration of Serine on Ge(100): Competition between the Hydroxymethyl and Carboxyl groups of Serine During the Adsorption Reaction

  • Kim, Ye-Won;Yang, Se-Na;Lee, Han-Gil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.182-182
    • /
    • 2011
  • We investigated the adsorption structures of serine on a Ge(100) surface by core-level photoemission spectroscopy (CLPES) in conjunction with density functional theory (DFT) calculations. The adsorption energies calculated using DFT methods suggested that four of six adsorption structures were plausible. These structures were the "O-H dissociated-N dative bonded structure", the "O-H dissociation bonded structure", the "Om-H dissociated-N dative bonded structure", and the "Om-H dissociation bonded structure" (where Om indicates the hydroxymethyl oxygen). These structures are equally likely, according to the adsorption energies alone. The core-level C 1s, N 1s, and O 1s CLPES spectra confirmed that the carboxyl oxygen competed more strongly with the hydroxymethyl oxygen during the adsorption reaction, thereby favoring formation of the "O-H dissociated-N dative bonded" and "O-H dissociation bonded" structures at 0.30 ML and 0.60 ML, respectively. The experimental results were corroborated theoretically by calculating the reaction pathways leading to the two adsorption geometries. The reaction pathways indicated that the "O-H dissociated-N dative bonded structure" is the major product of serine adsorption on Ge(100) due to comparably stable adsorption energy.

  • PDF

The Experimental Analysis of the PVC Foam Cored CFRP Sandwich Composite for the Mixed Mode Delamination Characteristics (복합모드 층간분리특성에 대한 PVC폼 코아 탄소섬유샌드위치 복합재의 실험적 해석)

  • Kwak, Jung Hoon;Yun, Yu Seong;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.8-13
    • /
    • 2018
  • The light weight composite materials have been replacing in high performance structures. The object of this study is to examine the effects of the initial crack location about a delamination in a PVC foam cored sandwich composite that is used for the strength improvement of structures. The initial crack location and fiber laminates thickness were changed with several types. The MMB specimen was used for evaluating the fracture toughness and crack behaviors. The material used in the experiment is a commercial twill carbon prepreg in CFRP material and Airex in PVC foam core. Sandwich laminate composites are composed by PVC foam core layer between CFRP face sheets. The face sheets were fabricated as 2 types of 5 and 8 plies. The initial cracks were located in a PVC form core and the interface of upper CFRP sheet. From the results, the crack initiation was affected with the location of the initial crack inserted in the PVC foam core. Among them, the initial crack at 1/3 of the upper part of the PVC foam core was the most rapid progression. And the critical energy release rate was $0.40kJ/m^2$, which is the lowest value when the initial crack was inserted into the interface between a PVC foam core and CFRP laminated with 5 plies. Meanwhile, the highest value of $1.27kJ/m^2$ was obtained when the initial crack was located at the center line in case of the 8 plies.

STRESS ANALYSIS OF ROOT AND SUPPORTING TISSUES BY VARIOUS POST CORE DESIGN (지대치 형태에 따른 Post core의 치근내부 및 지지조직의 응력분석)

  • Kim Jin;Vang Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.4
    • /
    • pp.468-481
    • /
    • 1993
  • The Purpose of this study was to analyze the stresses and displacements of various post and core. The Finite element models of central incisors were divided into seven types according to the various amount of remaining tooth structures. $10kgf/mm^2$ force was applied respectively as follows : 1) Horizontal on the labial surface 2) $26^{\circ}$ diagonal direction on the lingual surface. Material property, geometry, and load condition of each model were inputted to the two dimensional ANSYS 4.4A finite element program : stresses and displacements were analyzed. Results were follows : 1. In the case of $130^{\circ}$ shoulder post and core, Maximum tensile and shear stresses were observed in the crown margin. 2. Maximum shear stress was about 29% reduced by contrabevel. 3. In the case of 1mm axial tooth structure, Maximum tensile stress observed in the dentin. 4. In the case of but joint of cervix, Maximum stress concentration was observed in the dentin by the inclined and horizontal force. 5. Horizontal force produced the extraordinary high stresses in dentin and supporting structures. 6. The amount of remaining tooth structure affected the level of stress significantly and it determined the location of stress concentration.

  • PDF

Mitigation of seismic drift response of braced frames using short yielding-core BRBs

  • Pandikkadavath, Muhamed Safeer;Sahoo, Dipti Ranjan
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.285-302
    • /
    • 2017
  • Buckling-restrained braced frames (BRBFs) are commonly used as the lateral force-resisting systems in building structures in the seismic regions. The nearly-symmetric hysteretic response and the delayed brace core fracture of buckling-restrained braces (BRBs) under the axial cyclic loading provide the adequate lateral force and deformation capacity to BRBFs under the earthquake excitation. However, the smaller axial stiffness of BRBs result in the undesirable higher residual drift response of BRBFs in the post-earthquake scenario. Two alternative approaches are investigated in this study to improve the elastic axial stiffness of BRBs, namely, (i) by shortening the yielding cores of BRBs; and (ii) by reducing the BRB assemblies and adding the elastic brace segments in series. In order to obtain the limiting yielding core lengths of BRBs, a modified approach based on Coffin-Manson relationship and the higher mode compression buckling criteria has been proposed in this study. Both non-linear static and dynamic analyses are carried out to analytically evaluate the seismic response of BRBFs fitted with short-core BRBs of two medium-rise building frames. Analysis results showed that the proposed brace systems are effective in reducing the inter-story and residual drift response of braced frames without any significant change in the story shear and the displacement ductility demands.

The efficiency of passive confinement in CFT columns

  • Johansson, Mathias
    • Steel and Composite Structures
    • /
    • v.2 no.5
    • /
    • pp.379-396
    • /
    • 2002
  • The paper describes the mechanical behavior of short concrete-filled steel tube (CFT) columns with circular section. The efficiency of the steel tube in confining the concrete core depending on concrete strength and the steel tube thickness was examined. Fifteen columns were tested to failure under concentric axial loading. Furthermore, a mechanical model based on the interaction between the concrete core and the steel tube was developed. The model employs a volumetric strain history for the concrete, characterized by the level of applied confining stress. The situation of passive confinement is accounted for by an incremental procedure, which continuously updates the confining stress. The post-yield behavior of the columns is greatly influenced by the confinement level and is related to the efficiency of the steel tube in confining the concrete core. It is possible to classify the post-yield behavior into three categories: strain softening, perfectly plastic and strain hardening behavior. The softening behavior, which is due to a shear plane failure in the concrete core, was found for some of the CFT columns with high-strength concrete. Nevertheless, with a CFT column, it is possible to use high-strength concrete to obtain higher load resistance and still achieve a good ductile behavior.

Probabilistic multi-objective optimization of a corrugated-core sandwich structure

  • Khalkhali, Abolfazl;Sarmadi, Morteza;Khakshournia, Sharif;Jafari, Nariman
    • Geomechanics and Engineering
    • /
    • v.10 no.6
    • /
    • pp.709-726
    • /
    • 2016
  • Corrugated-core sandwich panels are prevalent for many applications in industries. The researches performed with the aim of optimization of such structures in the literature have considered a deterministic approach. However, it is believed that deterministic optimum points may lead to high-risk designs instead of optimum ones. In this paper, an effort has been made to provide a reliable and robust design of corrugated-core sandwich structures through stochastic and probabilistic multi-objective optimization approach. The optimization is performed using a coupling between genetic algorithm (GA), Monte Carlo simulation (MCS) and finite element method (FEM). To this aim, Prob. Design module in ANSYS is employed and using a coupling between optimization codes in MATLAB and ANSYS, a connection has been made between numerical results and optimization process. Results in both cases of deterministic and probabilistic multi-objective optimizations are illustrated and compared together to gain a better understanding of the best sandwich panel design by taking into account reliability and robustness. Comparison of results with a similar deterministic optimization study demonstrated better reliability and robustness of optimum point of this study.

Electro-elastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT

  • Mohammadimehr, Mehdi;Rostami, Rasoul;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.513-543
    • /
    • 2016
  • Third order shear deformation theory is used to evaluate electro-elastic solution of a sandwich plate with considering functionally graded (FG) core and composite face sheets made of piezoelectric layers. The plate is resting on the Pasternak foundation and subjected to normal pressure. Short circuited condition is applied on the top and bottom of piezoelectric layers. The governing differential equations of the system can be derived using Hamilton's principle and Maxwell's equation. The Navier's type solution for a sandwich rectangular thick plate with all edges simply supported is used. The numerical results are presented in terms of varying the parameters of the problem such as two elastic foundation parameters, thickness ratio ($h_p/2h$), and power law index on the dimensionless deflection, critical buckling load, electric potential function, and the natural frequency of sandwich rectangular thick plate. The results show that the dimensionless natural frequency and critical buckling load diminish with an increase in the power law index, and vice versa for dimensionless deflection and electrical potential function, because of the sandwich thick plate with considering FG core becomes more flexible; while these results are reverse for thickness ratio.

Structures of Ammonia Cluster Cations

  • 박종근
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.9
    • /
    • pp.1067-1072
    • /
    • 1999
  • Structures of unprotonated [(NH3)n+(n = 1-6)] and protonated [NH4+(NH3)n-1(n = 1-6)] ammonia cluster cations have been optimized with ab initio Hartree-Fock (HF) and second-order MФller-Plesset (MP2)/6-31+G ** levels and the harmonic vibrational frequencies have also been evaluated. In unprotonated cluster cations, NH3+ forms as a central core of the first ammonia solvation shell. In protonated cluster cations, NH4+ forms as a central core. In unprotonated dimer and trimer cations, there are two types of isomers (hydrogen-bonded and head-to-head interactions). In both cluster cations, the hydrogen-bonded isomers are more stable. In the hydrogen-bonded dimer cation, the proton transfer reaction takes place from (NH3-HN+H2) to (NH4+-NH2). But in the other unprotonated cluster cations, the proton transfer does not take place. In unprotonated pentamer and hexamer, a NH3+ core has both interactions in a complex. On the other hand, in unprotonated tetramer a core has only the hydrogen-bonded type combined with neutral ammonia molecules. With increasing cluster cation size, the bond lengths [R(NN)] between two nitrogen atoms and the distances [R(N ...H)] of the hydrogen-bond increase reg-ularly. In the calculated infra-red absorption bands for ammonia cluster cations, the characteristic peaks of the bridged NH vibration of the hydrogen-bonded clusters appear near 2500 cm-1 . With increasing size, the peaks shift from 2306 cm-1 to 2780 cm-1 .