• Title/Summary/Keyword: core dopants

Search Result 6, Processing Time 0.026 seconds

Thermally Expanded Core Fibers for Hybrid Fiber Components (광섬유 복합 소자를 위한 열확장코어 광섬유)

  • 김진하;김병윤
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.304-310
    • /
    • 1994
  • The use of thermally expanded core (TEe) fibers fabricated by thermal diffusion of dopants such as $GeO_{2}$ in hybrid fiber components has an advantage of eliminating lenses for collimation and focusing. An electric furnace is fabricated to heat the fibers locally for the core expansion. We observed an expansion of the mode size at $1.3\mu\textrm{m}$ wavelength by 27% after treating a section of single mode optical fiber at $1250^{\circ}C$ for 10 hours. hours.

  • PDF

Enhancing the Efficiency of Core/Shell Nanowire with Cu-Doped CdSe Quantum Dots Arrays as Electron Transport Layer (구리 이온 도핑된 카드뮴 셀레나이드 양자점 전자수송층을 갖는 나노와이어 광전변환소자의 효율 평가)

  • Lee, Jonghwan;Hwang, Sung Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.94-98
    • /
    • 2020
  • The core/shell of nanowires (NWs) with Cu-doped CdSe quantum dots were fabricated as an electron transport layer (ETL) for perovskite solar cells, based on ZnO/TiO2 arrays. We presented CdSe with Cu2+ dopants that were synthesized by a colloidal process. An improvement of the recombination barrier, due to shell supplementation with Cu-doped CdSe quantum dots. The enhanced cell steady state was attributable to TiO2 with Cu-doped CdSe QD supplementation. The mechanism of the recombination and electron transport in the perovskite solar cells becoming the basis of ZnO/TiO2 arrays was investigated to represent the merit of core/shell as an electron transport layer in effective devices.

Fabrication and Analysis of Chirped Fiber Bragg Gratings by Thermal Diffusion

  • Cho, Seung-Hyun;Park, Jae-Dong;Kim, Byoung-Whi;Kang, Min-Ho
    • ETRI Journal
    • /
    • v.26 no.4
    • /
    • pp.371-374
    • /
    • 2004
  • We propose and demonstrate a fabrication method of chirped fiber gratings by a thermal diffusion process. The method could suggest a direction for a simple and cost-effective implementation of chirped fiber grating-based devices.

  • PDF

Effect of Soaking Temperature on Erbium Doping of Optical Fiber Core in MVCD Solution Doping Process

  • Han, Won-Taek;Kim, Yune-Hyoun;Paek, Un-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.47-52
    • /
    • 2003
  • Effect of soaking temperature on erbium doping of the optical fiber core during solution doping procedure, especially in the modified chemical vapor deposition (MCVD) process, was investigated. The concentration of dopants such as $Er^{3+} and Al^{3+}$ in the preforms and the optical fibers measured by the electron probe microanalysis (EPMA) and the optical spectrum analyzer (OSA) was found to increase with decreasing the soaking temperature. The increase in the concentration of the $Er^{3+}$ is attributed to the precipitation of the erbium due to the decrease in the solubility as well as the increase of capillary force and viscosity of the doping solution by decreasing the temperature.

Synthesis of Uniformly Doped Ge Nanowires with Carbon Sheath

  • Kim, Tae-Heon;;Choe, Sun-Hyeong;Seo, Yeong-Min;Lee, Jong-Cheol;Hwang, Dong-Hun;Kim, Dae-Won;Choe, Yun-Jeong;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.289-289
    • /
    • 2013
  • While there are plenty of studies on synthesizing semiconducting germanium nanowires (Ge NWs) by vapor-liquid-solid (VLS) process, it is difficult to inject dopants into them with uniform dopants distribution due to vapor-solid (VS) deposition. In particular, as precursors and dopants such as germane ($GeH_4$), phosphine ($PH_3$) or diborane ($B_2H_6$) incorporate through sidewall of nanowire, it is hard to obtain the structural and electrical uniformity of Ge NWs. Moreover, the drastic tapered structure of Ge NWs is observed when it is synthesized at high temperature over $400^{\circ}C$ because of excessive VS deposition. In 2006, Emanuel Tutuc et al. demonstrated Ge NW pn junction using p-type shell as depleted layer. However, it could not be prevented from undesirable VS deposition and it still kept the tapered structures of Ge NWs as a result. Herein, we adopt $C_2H_2$ gas in order to passivate Ge NWs with carbon sheath, which makes the entire Ge NWs uniform at even higher temperature over $450^{\circ}C$. We can also synthesize non-tapered and uniformly doped Ge NWs, restricting incorporation of excess germanium on the surface. The Ge NWs with carbon sheath are grown via VLS process on a $Si/SiO_2$ substrate coated 2 nm Au film. Thin Au film is thermally evaporated on a $Si/SiO_2$ substrate. The NW is grown flowing $GeH_4$, HCl, $C_2H_2$ and PH3 for n-type, $B_2H_6$ for p-type at a total pressure of 15 Torr and temperatures of $480{\sim}500^{\circ}C$. Scanning electron microscopy (SEM) reveals clear surface of the Ge NWs synthesized at $500^{\circ}C$. Raman spectroscopy peaked at about ~300 $cm^{-1}$ indicates it is comprised of single crystalline germanium in the core of Ge NWs and it is proved to be covered by thin amorphous carbon by two peaks of 1330 $cm^{-1}$ (D-band) and 1590 $cm^{-1}$ (G-band). Furthermore, the electrical performances of Ge NWs doped with boron and phosphorus are measured by field effect transistor (FET) and they shows typical curves of p-type and n-type FET. It is expected to have general potentials for development of logic devices and solar cells using p-type and n-type Ge NWs with carbon sheath.

  • PDF

Red Fluorescent Donor-π-Acceptor Type Materials based on Chromene Moiety for Organic Light-Emitting Diodes

  • Yoon, Jhin-Yeong;Lee, Jeong Seob;Yoon, Seung Soo;Kim, Young Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1670-1674
    • /
    • 2014
  • Two red emitters, 2-(7-(4-(diphenylamino)styryl)-2-methyl-4H-chromen-4-ylidene)malonitrile (Red 1) and 2-(7-(julolidylvinyl)-2-methyl-4H-chromen-4-ylidene)malonitrile (Red 2) have been designed and synthesized for application as red-light emitters in organic light emitting diodes (OLEDs). In these red emitters, the julolidine and triphenyl moieties were introduced to the emitting core as electron donors, and the chrome-derived electron accepting groups such as 2-methyl-(4H-chromen-4-ylidene)malononitrile were connected to electron donating moieties by vinyl groups. To explore the electroluminescence properties of these materials, multilayered OLEDs using red materials (Red 1 and Red 2) as dopants in $Alq_3$ host were fabricated. In particular, a device using Red 1 as the dopant material showed maximum luminous efficiencies and power efficiencies of 0.82 cd/A and 0.33 lm/W at $20mA/cm^2$. Also, a device using Red 2 as a dopant material presented the CIEx,y coordinates of (0.67, 0.32) at 7.0 V.