• Title/Summary/Keyword: copper slag

Search Result 72, Processing Time 0.03 seconds

The Stability of Copper Slag in The Caisson Filling Material (케이슨 속채움재로서 동슬래그의 안정성 검토)

  • Noh, Ki-Man
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1370-1376
    • /
    • 2010
  • In this study, usability and stability in the caisson filling material were reviewed that copper salg(one million tons per one-year) were produced by smelter. In order to complete these studies, chemical and physical comparing analyses were performed by sea-sand materials as to the materials suitability, After construction, the structural displacement of caisson was measured by the instrument and was examined for stability. As a result of analysis, it was determined that copper slag is eco-friendly, and can be used as recycled alternative to aggregates materials.

  • PDF

The Study on Properties of Mortar with Copper Smelting Slag (동제련 슬래그를 혼입한 모르타르의 강도 특성 연구)

  • Park, Cho-Bum;Ji, Suk-Won;Seo, Chee-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.263-268
    • /
    • 2000
  • Recently, the recycling of the by-products was attempted to various fields. One of the major industry, the copper manufacturing industry produced a lot slags. in this study, the copper smelting slag was used to use practically application for the aggregate of concrete. To find the optimum mixing ratio of mortar with the copper smelting slag as substitution for sand, the mixing ratio was increased 1:2 to 1:5 step by step and every mixture was contained 5 steps sand substitutive ratio. The substitutive ratio of sand was increased 25% st대 by step from 0% to 100%. The result of this study was shown as follows. 1. In the every mixture, as the substitutive ratio was increased, the flow was decrease 3.64% from 18cm, and the unit content weigth was increased 5.5% in average. 2. The property of the strength was judged that it was more affected W/C and mixing ratio than the copper smelting slag.

  • PDF

A Study on the Evaluation of the Durability of Concrete Using Copper Slag Aggregates (동슬래그 골재를 함유한 콘크리트의 내구성 평가 연구)

  • Lee, Mun-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.773-784
    • /
    • 2008
  • Even if the exploitation of copper slag produced during the smelting process of copper as aggregate for construction purpose has been permitted since 2004 in Korea, the lack of sufficient data enabling to evaluate its long-term stability that is its durability has to date impeded its application. This study intends to investigate experimentally the durability characteristics of 18 and 27 MPa-class commercial concretes in which natural sand (fine aggregates) has been partially replaced by copper slag through accelerated and exposure tests so as to provide bases promoting the application of copper slag concrete. The experimental results revealed insignificant difference of the durability characteristics in most of the mix proportions in which 30% of natural sand was replaced by copper slag. In the case where crushed sand was adopted, tests verified similar characteristics for replacement ratio of 50%. Particularly, the results of the exposure test conducted during 8 years demonstrated that equivalent level of durability was secured compared to the case using natural sand. In the case of 18MPa-class lower grade concrete, exposure test verified also that the physical lifetime similar to 50 years could be secured until carbonation reaches cover depth of 20 mm.

Recovery of copper from the copper converter slag(II) (동제연소 전노슬래그로부터 동의 회수(II))

  • Oh, Jae-Hyun;Kim, Mahn;Kim, Mi-Sung;Yoo, Taik-Soo
    • Resources Recycling
    • /
    • v.2 no.4
    • /
    • pp.33-41
    • /
    • 1993
  • In recovering copper from the copper converter slag, various separation methods, such as flotation, sieving and magnetic separation had been tried. The copper converter slag used in this study was prepared in two ways, i.e. 2 hour cooled and 10 hour cooled. From the flotation of copper slag, 45% Cu concentrate is obtained and the amount of copper recovery is about 93%. Before the flotation, copper in the slag could be also pre-recovered using sieving and separation. It is also found that as the content of copper in the concentrate increa-ses, that of arsenic increase, while zinc and iron contents decrease.

  • PDF

A Study on the Flowing Characteristic of Concrete with Copper Smelting Slag (동제련 슬래그를 사용한 콘크리트의 경시별 유동특성에 관한 실험적 연구)

  • 김정욱;지석원;이세현;전현규;유택동;서치호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.319-324
    • /
    • 2001
  • Recently new practical use way of industry product is required. In this study, to find flowing property of slump, unit weight, the air amount, compressive strength etc. Compressive strength 240, 270kgf/$cm^{2}$, slump 8$\pm$2.5(I), 152$\pm$.5(II)cm, mixing ratio of copper smelting slag decided by 0, 25, 50, 75, 100% gradually, The result of this study was follows ; 1. Unit weight increased 2.2%~4.4% according as mixing ratio of copper smelting slag increases. 2. Slump increased about 2~5% as the mixing ratio increased gradually 3. Compressive strength was increased about 4~28% in copper smelting slag mixing ratio 25~50% and 8~20% decreased more than mixing ratio 75%.

  • PDF

Characterisitics of the Copper Converter Slag -Recovery of Copper from the Copper Converter Slag(I)- (동제연소 전노슬래그의 생성에 관하여 -동제연소 전노슬래그로 부터 동의 회수(I)-)

  • Kim, Mahn;Kim, Mi-Sung;Yoo, Taik-Soo;Oh, Jae-Hyun
    • Resources Recycling
    • /
    • v.1 no.1
    • /
    • pp.14-22
    • /
    • 1992
  • As a basic study to recover the copper from the copper converter slag, the characterisitcs of converter slag was studied. The results obtained in this work are as follows. 1. The copper converter slag is composed of Cu, $Cu_2$S, $Fe_3$$O_4$, Fayalite and silicate. 2. It is supposed that magnetite in converter slag is oxidized to hematite at $720^{\circ}C$ and this phase is soluted to fayalite. 3. As the converter slag is added in the water solution, pH increased and the heavy metal ions in the water are adsorbed on the slag. 4. Work index of the converter slag cooled for the 10 hour and the 2 hour are 25~27 kWh/ton and 35 kWh/ton, respectively. 5. In the case of grinding test of converter slag, fayalite in converter slag is easily grinded than magnetite in converter slag.

  • PDF

Total value recovery in the copper smelting and refining operations

  • Kim Joe. Y.;Kong Bong S.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.590-597
    • /
    • 2003
  • Processing and smelting of copper containing sulphide concentrates result in the accumulation of impurities into various process streams. All primary copper smelters and refineries around the world produce significant amounts of slag, dust, sludge, residues and others, which contain copper and precious metals. The recovery of these valuable metals is essential to the overall economics of the smelting process. Physical, chemical and mineralogical characterization of particular slag and Cottrell dusts from primary smelters and $Dor\'{e}$ furnace (TBRC) slag and Pressure Leached Anode slimes from a copper refinery have been carried out to understand the basic behind the recovery processes. Various process options have been evaluated and adapted for the treatment of slag from different smelting furnaces and Cottrell dusts as well as the intermediate products from copper refineries. Besides the hydro- or pyro-metallurgical treatments, the above mentioned physical separation options such as magnetic, gravity separation, flotation and precipitation flotation processes have been successfully identified and adapted as the possible process options to produce a Cu-rich or precious metal-rich concentrates for in-house recycling and other valued by-product for further treatment. The results of laboratory, pilot plant and production operations are presented, and incorporation of several alternative flowsheet is discussed in this paper.

  • PDF

MINERAL PROCESSING and COPPER EXRACTIVE METALLURGY Complete Metal Recovery

  • Kim, J.Y.
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.22-34
    • /
    • 2003
  • Processing and smelting of copper containing sulphide concentrates result in the accumulation of impurities into various process streams. All primary copper smelters and refineries around the world produce significant amounts of slag, dust, sludge, residues and others, which contain copper and precious metals. The recovery of these valuable metals is essential to the overall economics of the smelting process. Physical, chemical and mineralogical characterization of particular slag and Cottrell dusts from primary smelters and Dore furnace (TBRC) slag and Pressure Leached Anode slimes from a copper refinery have been carried out to understand the basic behind the recovery processes. Various process options have been evaluated and adapted for the treatment of slag from different smelting furnaces and Cottrell dusts as well as the intermediate products from copper refineries. Besides the hydro- or pyre-metallurgical treatments, the above mentioned physical separation options such as magnetic, gravity separation, flotation and precipitation flotation processes have been successfully identified and adapted as the possible process options to produce a Cu-rich or precious metal-rich concentrates for in-house recycling and other valued by-product for further treatment. The results of laboratory, pilot plant and production operations are presented, and incorporation of several alternative flowsheet is discussed in this paper.

  • PDF

A Study on the Properties of Concrete Substituting Copper Slag for Fine Aggregate (잔골재를 동슬래그로 대체한 콘크리트의 특성 연구)

  • Bae, Ju Seong;Kim, Nam Wook;Ko, Sang Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.151-158
    • /
    • 2007
  • The recent government policy for environment is pursuing for a circular waste control system not only to reduce waste as much as possible but also to vigorously use the already produced waste. Copper slag has a higher fineness modulus and a greater specific gravity than natural aggregate. but when the substitutive ratio of fine aggregate is higher than 30%, material segregation occurs by bleeding. Thus, in this study, the strength and the physical properties were tested for the specimens manufactured by varying the types of admixtures, and the substitutive ratio of copper slag to suppress material segregation occurring due to the bleeding of concrete using copper slag as the substitutive material of fine aggregate and to find the adequate substitutive ratio of copper slag.

The Fluidity Properties of High Strength Concrete adding Copper Slag as Mineral Admixture (동제련 슬래그를 혼입한 고강도 콘크리트의 유동특성에 관한 연구)

  • Lee, Dong-Un;Yoon, Jong-Jin;Kim, Dae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.271-279
    • /
    • 2016
  • This study examines the properties of high-fluidity concrete after adding copper slag as a mineral admixture. For this purpose, the replacement ratio of cement to copper slag was varied to 0, 10, 20, 30, 40, and 50%. A slump flow test, reach time slump flow of 500 mm, and a U-Box and O-lot test were conducted on the fresh concrete. The compressive strength of the hardened concrete was determined at 3, 7, 14 and 28 days. According to the test results, the workability, compaction, and compressive strength of the high-fluidity concrete increased when replacing 30% of the cement with copper slag. These parameters decreased for all material ages with more than 30% copper slag, which was the optimal mixture ratio.