• Title/Summary/Keyword: copper process

Search Result 1,211, Processing Time 0.028 seconds

Method of Solving Oxidation Problem in Copper Pillar Bump Packaging Technology of High Density IC (고집적 소자용 구리기둥범프 패키징에서 산화문제를 해결하기 위한 방법에 대한 연구)

  • Jung, One-Chul;Hong, Sang-Jeen;Soh, Dae-Wha;Hwang, Jae-Ryong;Cho, Il-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.919-923
    • /
    • 2010
  • Copper pillar tin bump (CPTB) was developed for high density chip interconnect technology. Copper pillar tin bumps that have $100{\mu}m$ pitch were introduced with fabrication process using a KM -1250 dry film photoresist (DFR), copper electroplating method and Sn electro-less plating method. Mechanical shear strength measurements were introduced to characterize the bonding process as a function of thermo-compression. Shear strength has maximum value with $330^{\circ}C$ and 500 N thenno-compression process. Through the simulation work, it was proved that when the copper pillar tin bump decreased in its size, it was largely affected by the copper oxidation.

Removal Characteristics of Copper Ion in Wastewater by Employing a Biomass from Liquor Production Process as an Adsorbent (주류 제조과정에서 발생하는 바이오매스를 흡착제로 한 구리 제거 특성)

  • Baek, Mi-Hwa;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.626-631
    • /
    • 2006
  • The adsorption features of copper ion have been investigated by taking the barley residue which occurring from the beer production process as an adsorbent. Under the experimental conditions, adsorption equilibrium of copper ion was attained within 30 minutes after the adsorption started and the adsorption reaction was observed to be first order. As the temperature increased, the adsorbed amount of copper ion at equilibrium was also increased, which indicated that the adsorption reaction was endothermic. Based on the experimental results which obtained by varying the temperatures, several thermodynamic parameters for copper adsorption reaction were estimated. Regarding the electrokinetic behavior of barley residue, its electrokinetic potential was observed to be positive below pH 5 and turned into negative above this pH. In the pH range from 1.5 to 4, copper adsorption was found to be increased, which was well explained by the electrokinetic behavior of barley residue in the pH range. When nitrilotriacetic acid, which is a complexing agent, was coexisted with copper ion, equilibrium adsorption of copper ion was decreased and this was presumed to be due to the formation of metal complex. In addition, the adsorbed amount of copper ion was examined to be increased when $KNO_3$ was coexisted, however, it approached a saturated value above a certain concentration of $KNO_3$.

Development of Forging Parts for Solar Electrode Body Using Oxygen-Free Copper Material (무산소동 소재를 활용한 태양광 일렉트로드 바디 단조 부품 개발)

  • Park, Dong-Hwan;Tak, Yun-Hak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.28-35
    • /
    • 2016
  • Forging operations are non-stationary processes occurring because of indirect pressure, generally, under conditions of three-dimensional stress and deformation. Furthermore, due to friction and the constraints of die geometry, deformation is not homogeneous. Material flow and deformation are largely determined by the shape of the tools. It is well known that net-shape forging can improve the mechanical strength of the final product as well as reduce material waste. Oxygen-free copper that is used for electrical and electronic components has excellent electrical and thermal conductivity. Oxygen-free copper parts have a low productivity in cutting process. Thus, the forging process is performed in order to improve the low productivity in cutting process. The forging of oxygen-free copper for electrode body parts was modeled using finite element simulation and forging experiments that were conducted for producing electrode body parts at room temperature. In order to reduce the cost of cutting products, the forging was performed in a closed cavity to obtain near-net or net-shape parts.

A Study on the Copper Bus-bar Drawing Dies using APDL/UIDL (APDL/UIDL을 이용한 동부스바 인발금형에 관한 연구)

  • Kwon H.H.;Lee J.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.11a
    • /
    • pp.45-53
    • /
    • 2001
  • Copper bus-bar is made by drawing process and used in many part of industry. When design drawing die for copper bus-bar, design factor is focused on the deformation of die-land by drawing force and shrink fit. In this paper, to determine shrink fit value is analyzed by automatic shrink fit analysis program, APDL/UIDL language in a commercial FEM package, ANSYS, has been developed that enables optimal design of the dies taking into account the elastic deflections generated in shrink fitting the die inserts and that caused by the stresses generated in the process and by using DEFORM software for drawing process analysis. This data can be processed as load input data for a finite element die-stress analysis. Process simulation and stress analysis are thus combined during the drawing die design. The stress analysis of the dies is used to determine optimized dimension of die-land.

  • PDF

Recovery of Copper from Waste Printed Circuit Boards by High-temperature Milling Process (고온 밀링 공정을 통한 폐인쇄회로기판으로부터 구리 회수)

  • Woo-chul Jung;Byoungyong Im;Dae-Geun Kim
    • Resources Recycling
    • /
    • v.33 no.4
    • /
    • pp.22-28
    • /
    • 2024
  • Waste PCBs contain a large amount of valuable resources, including copper, and technology to recover them is constantly being developed. Generally, to recycle waste PCBs, a physical pretreatment process such as shredding and crushing is required. However, during this stage, the loss rate of metals is high and the sorting efficiency is low, indicating a need for a more efficient recycling pretreatment process. In this study, a high-temperature milling process, which simultaneously employs heat treatment and ball milling, was utilized to efficiently recover copper from waste PCBs. An experiment was conducted at 350 ℃ with milling time, milling speed, and the weight of the balls as variables. The results showed a copper recovery rate of over 90% under the conditions of a ball weight of 500 g, a milling speed of 70 RPM, and a milling time of 5 hours. The purity of the recovered copper was approximately 93%, and through post-processing after the high-temperature milling process, the feasibility of reusing the recovered copper as a high-purity material was confirmed.

Dishing and Erosion in Chemical Mechanical Polishing of Electroplated Copper

  • Yoon, In-Ho;Ng, Sum Huan;Hight, Robert;Zhou, Chunhong;Higgs III, C. Fred;Yao, Lily;Danyluk, Steven
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.435-437
    • /
    • 2002
  • Polishing of copper, a process called copper chemical mechanical polishing, is a critical, intermediate step in the planarization of silicon wafers. During polishing, the electrodeposited copper films are removed by slurries: and the differential polishing rates between copper and the surrounding silicon dioxide leads to a greater removal of the copper. The differential polishing develops dimples and furrows; and the process is called dishing and erosion. In this work, we present the results of experiments on dishing and erosion of copper-CMP, using patterned silicon wafers. Results are analyzed for the pattern factors and properties of the copper layers. Three types of pads - plain, perforated, and grooved - were used for polishing. The effect of slurry chemistries and pad soaking is also reported.

  • PDF

Effect of Zincate Treatment Time on Dissolution Behavior and Deposition of Copper on AZ31 Mg alloy in Pyrophosphate Bath

  • Van Phuong, Nguyen;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.194.1-194.1
    • /
    • 2016
  • The present study investigated the effect of zincate treatment time on the dissolution behavior and the deposition of copper by immersion process and electroplating process on AZ31 Mg alloy substrate in a copper pyrophosphate bath. Without zincate pretreatment, the AZ31 Mg substrate quickly dissolved in the copper pyrophosphate solution although an external cathodic current was applied. The copper layers deposited on non-zincate treated AZ31 Mg alloy substrate by both immersion and electroplating processes showed very porous structure and very poor adhesion. With increasing zincate treatment time up to 2 min, the dissolution of AZ31 substrate in pyrophosphate solution rapidly decreased and the deposited copper layer was less porous and exhibited stronger adhesion. The immersion of AZ31 Mg sample in zincate solution for 5 min was found as a critical time for producing a non-porous and adherent electrodeposited copper layer on AZ31 Mg alloy. The optimum zincating time can be determined by observing the open circuit potential (OCP) of AZ31 Mg alloy samples in a copper pyrophosphate electroplating bath. The OCP reached a stable value of about -0.10 V (vs. SCE) after 5 min of immersion in the copper pyrophosphate electroplating solution.

  • PDF

Characteristics of Electric Resistance Heated Surface Friction Spot Welding Process of Copper and Aluminum Dissimilar Metal Sheets (구리와 알루미늄 이종금속 판재간의 전기저항가열 표면마찰 스폿용접 특성)

  • Sun, Xiao-Guang;Jin, In-Tai
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.99-109
    • /
    • 2022
  • In this study, an electric resistance-heated surface friction spot-welding process was proposed and tested for the spot-welding ability of copper and aluminum dissimilar metal sheets using electric resistance heating and surface friction heating. This process has welding variables, such as the current value, energizing cycles, rotational speed, and friction time. The current value and energizing cycle can affect the resistance heat, and the rotational speed of the rotating pin and friction time influence frictional heat generation. Resistance heating before friction heating has a preheating effect on the Cu-Al contact interface and a positive effect on preventing friction heat loss during the friction stage. However, because resistance preheating can soften the copper sheet and affect the contact stress and friction coefficient, it has difficulties that may adversely affect frictional heat generation. Therefore, the optimal combination of welding variables should be determined through simulations and experiments of the spot-welding process to determine the effects of electric resistance preheating on the suggested process. Through this procedure, it is known that the proposed spot-welding process can improve the welding quality during the spot welding of Cu-Al sheets.

The Study on Resource Recovery of Sludge Containing Heavy Metals and its Residue Stabilization

  • Hu, Shao-Hua;Tsai, Min-Shing;Tyngbin Onlin
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.448-452
    • /
    • 2001
  • An Experimental study was carried out to develop a simple method of processing copper waste sludge which is produced by PBC manufacturing. The procedure is based on leaching of wet sludge in 2N H$_2$SO$_4$, and the solid / liquid ratio is controlled approximately at 1/10. The recovery of copper is 85.4%, and pH of the leachate is 3.20. Adding ammonia solution into leachate forms ammine, and hydroxide compounds derived from other impurities in leachate at pH 10. The hydroxide compound can be treated by ferrite process, and the product is a stable oxide compound. Then the ammine solution is heated to evaporate ammonia, and the copper hydroxide is formed. Heating at 8$0^{\circ}C$by aeration, copper hydroxide is transformed into copper oxide with a purity of 98.4%. This process can recover most copper from sludge and the residue can be stabilized by the formation of a stable oxide compound which is not hazardous to environment.

  • PDF

Duplication of Koryo Tripitaka (Taejang′kyong) by Copper Electroforming (전주공정을 이용한 팔만대장경 동판제작)

  • 김인곤;강경봉;이재근;오명현
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • Copper electroforming process has been applied to duplicate Koryo Tripitaka (Taejang'kyong), wooden printing block. Thin copper replica printing plates of 1 mm thickness was successfully manufactured from the printing face (54.5${\times}$25.5 cm) of wooden printing plate. Major processes are (1) silicon rubber replication of the master (2) silvering on silicon rubber (3) copper electroforming (4) separation of copper from the silicon mandrel (5) final coloring by brass plating and trimming. This process has various Potential applications in making thin metallic objects such as plaques, statues, bust and hollow metal objects for jewelry.