• Title/Summary/Keyword: copper particles

Search Result 261, Processing Time 0.024 seconds

Particle Removal on Buffing Process After Copper CMP (구리 CMP 후 버핑 공정을 이용한 연마 입자 제거)

  • Shin, Woon-Ki;Park, Sun-Joon;Lee, Hyun-Seop;Jeong, Moon-Ki;Lee, Young-Kyun;Lee, Ho-Jun;Kim, Young-Min;Cho, Han-Chul;Joo, Suk-Bae;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.17-21
    • /
    • 2011
  • Copper (Cu) had been attractive material due to its superior properties comparing to other metals such as aluminum or tungsten and considered as the best metal which can replace them as an interconnect metal in integrated circuits. CMP (Chemical Mechanical Polishing) technology enabled the production of excellent local and global planarization of microelectronic materials, which allow high resolution of photolithography process. Cu CMP is a complex removal process performed by chemical reaction and mechanical abrasion, which can make defects of its own such as a scratch, particle and dishing. The abrasive particles remain on the Cu surface, and become contaminations to make device yield and performance deteriorate. To remove the particle, buffing cleaning method used in post-CMP cleaning and buffing is the one of the most effective physical cleaning process. AE(Acoustic Emission) sensor was used to detect dynamic friction during the buffing process. When polishing is started, the sensor starts to be loaded and produces an electrical charge that is directly proportional to the applied force. Cleaning efficiency of Cu surface were measured by FE-SEM and AFM during the buffing process. The experimental result showed that particles removed with buffing process, it is possible to detect the particle removal efficiency through obtained signal by the AE sensor.

Synthesis of Ag-Cu Composite Powders for Electronic Materials by Electroless Plating Method (무전해 도금법을 이용한 전자소재용 은-구리 복합분말의 제조)

  • Yoon, C.H.;Ahn, J.G.;Kim, D.J.;Sohn, J.S.;Park, J.S.;Ahn, Y.G.
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.221-226
    • /
    • 2008
  • Silver coated copper composite powders were prepared by electroless plating method by controlling the activation and deposition process variables such as feeding rate of silver ions solution, concentration of reductant and molar ratio of activation solution $(NH_4OH/(NH_4)_2SO_4)$ at room temperature. The characteristics of the product were verified by using a scanning electron microscopy (SEM), X-ray diffraction (XRD) and atomic absorption (A.A.). It is noted that completely cleansing the copper oxide layers and protecting the copper particles surface from hydrolysis were important to obtain high quality Ag-Cu composite powders. The optimum conditions of Ag-Cu composite powder synthesis were $NH_4OH/(NH_4)_2SO_4$ molar ratio 4, concentration of reductant 15g/l and feeding rate of silver ions solution 2 ml/min.

Aluminum, Copper and Lead as Shielding Materials in 6 MeV Electron Therapy (6 MeV 전자선 치료 시 차폐물질로서 알루미늄, 구리, 납)

  • Lee, Seung-Hoon;Cha, Seok-Yong;Lee, Sun-Young
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.2
    • /
    • pp.457-466
    • /
    • 2014
  • During irradiation of lesions in cancer treatment with high energy electrons, normal tissue and critical organs are protected by the shielding material. Scattered radiation that generated the shielding materials affect the depth dose and atomic number. Therefore, we want to examine secondary particles and the scattered photons through calculation and its associated analysis, and compare the measurement for the aluminum, copper, and lead shielding substance of which thickness has 95% charge reduction. Dose change rate which effected scattering radiation was found to be +0.88% for material thickness, +0.43% for atomic number, and +19.70%, +15.20%, +12.40% for measurement, +25.00%, +15.10%, +13.70% for calculation on the aluminum, copper, and lead materials of which thickness has 95% charge reduction, respectively, As a result, we found that scattering rate was dependent on thickness than atomic number. In the dose increasing rate, scattered electrons are more important than scattered photon. For the above mentioned reasons, I think that high atomic number materials should be applied to reduce scattered radiation that generated with thickness effect.

Flow Boiling Heat Transfer Characteristics on Sintered Microporous Surfaces in a Mini-channel (마이크로 소결 구조 채널에서의 흐름 비등 열전달 특성 연구)

  • KIM, YEONGHWAN;SHIN, DONG HWAN;KIM, JIN SUB;MOON, YOOYONG;HEO, JAEHUN;LEE, JUNGHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.105-110
    • /
    • 2018
  • The flow boiling heat transfer of water was experimentally investigated on plain and sintered microporous surfaces in a mini-channel. The effects of microporous coating on flow boiling heat transfer of subcooled water were investigated in a 300 mm long mini-channel with a cross section of $20{\times}10mm^2$. The test section has sufficiently long entrance length of 300 mm which provides a fully-developed flow before the channel inlet. The bottom side of the channel was heated by a copper block assembled with a high-density cartridge heater and other sides of the channel were insulated. The microporous surface was fabricated by sintering copper particles with the average particle size of $50{\mu}m$ on the top side of the copper block. Heat transfer measurement was conducted at the mass flux of $208kg/m^2s$ and the heat flux up to $500kW/m^2$. Microporous coated surface showed an earlier boiling incipience compared with plain surface regardless of the mass flux. Microporous coating were significantly attributed to local wall temperature and local heat transfer coefficient for flow boiling.

Thermal Decomposition of Hydrated Copper Nitrate [$Cu(NO_3)_2{\cdot}3H_2O$] on Activated Carbon Fibers

  • Ryu, Seung-Kon;Lee, Woon-Kyu;Park, Soo-Jin
    • Carbon letters
    • /
    • v.5 no.4
    • /
    • pp.180-185
    • /
    • 2004
  • Thermolysis of $Cu(NO_3)_2{\cdot}3H_2O$ impregnated activated carbon fiber (ACF) was studied by means of XRD analysis to obtain Cu-impregnated ACF. $Cu(NO_3)_2{\cdot}3H_2O$ was converted into $Cu_2O$ around $230^{\circ}C$. The $Cu_2O$ was reduced to Cu at $400^{\circ}C$, resulting in ACF-C(Cu). Some Cu particles have a tendency to aggregate through the heat treatment, resulting in the ununiform distribution in ACF. Catalytic decomposition of NO gas has been performed by Cu-impregnated ACF in a column reactor at $400^{\circ}C$. Initial NO concentration was 1300 ppm diluted in helium gas. NO gas was effectively decomposed by 5~10 wt% Cu-impregnated ACF at $400^{\circ}C$. The concentration of NO was maintained less than 200 ppm for 6 hours in this system. The ACF-C(Cu) deoxidized NO to $N_2$ and was reduced to ACF-$C(Cu_2O)$ in the initial stage. The ACF-$C(Cu_2O)$ also deoxidized NO to $N_2$ and reduced to ACF-C(CuO). This ACF-C(CuO) was converted again into ACF-C(Cu) by heating. There was no consumption of ACF in mass during thermolysis and catalytic decomposition of NO to $N_2$ by copper. The catalytic decomposition was accelerated with increase of the reaction temperature.

  • PDF

Synthesis of Co Diffused Cu Matrix by Electroplating and Annealing for Application of Mössbauer Source (뫼스바우어선원적용을 위한 전기도금과 열처리기법을 이용한 Co가 확산된 Cu기지체 제조)

  • Choi, Sang Moo;Uhm, Young Rang
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.6
    • /
    • pp.186-190
    • /
    • 2014
  • To establish the coating conditions for $^{57}Co$, non-radioactive Co ions are dissolved in an acid solution and electroplated on to a copper plate. Then, the thermal diffusion of electroplated Co into a copper matrix was studied to apply a $^{57}Co$ $M{\ddot{o}}ssbauer$ source. Nanocrystalline Co particles were coated on a Cu substrate using DC electro-deposition at a pH of 1.89 to 5 and $20{\sim}30mA/cm^2$. The average grain size was up to 54 nm as the pH increased to 5. The second phase of Co-oxide was formatted as the pH was increased above 4. The diffusion degree was evaluated by mapping using scanning electron microscopy (SEM). The influence of different annealing conditions was investigated. The diffusion depth of Co depends on the annealing temperature and time. The results obtained confirm that the deposited Co diffused almost completely into a copper matrix without substantial loss at an annealing temperature of $900^{\circ}C$ for 2 hours.

Excessive copper in feed not merely undermines animal health but affects food safety

  • Ma, Zicheng;Li, Yan;Han, Zifeng;Liu, Zhaohu;Wang, Hongyu;Meng, Fanliang;Liu, Sidang;Chen, Dawei;Liu, Mengda
    • Journal of Veterinary Science
    • /
    • v.22 no.3
    • /
    • pp.31.1-31.12
    • /
    • 2021
  • Background: Blackened intestines in slaughtered pigs have been commonly observed in China in recent years. However, no cause has been reported. Objectives: We attempted to determine whether the blackening of the pig intestine was related to an excess of copper (Cu) in their feed. Methods: In this study, we observed and collected porcine intestines in small- and large-scale pig slaughterhouses in Shandong province from May to October 2018. Twelve types of metal ions were detected in the black intestinal samples. Results: The Cu level in the intestine samples was mostly higher than the Chinese national limit for food. Further study showed that Cu supplementation in most commercial porcine feed also exceeded the national standard. An animal model (mouse) that could mimic the intestinal blackening in pigs was established. Compared to control mice, Cu accumulated in the liver and intestines of mice fed an excessive Cu level, confirming the excessive Cu in the feed may be considered the major cause of blackened porcine intestines. Microscopic examination revealed that black intestines had many particles containing Cu in the lamina propria of the intestinal mucosa, and the intestinal mucosal epithelial cells showed degeneration and necrosis. Conclusions: In conclusion, overuse of Cu in animal feed can lead to animal poisoning and Cu accumulation in animal products. Such overuse not only harms the health of livestock but can also affect public health.

Antioxidation Behavior of Submicron-sized Cu Particles with Ag Coating (서브 마이크론급 구리 입자의 은도금 공정에 따른 내산화성 강화 연구)

  • Choi, Eun Byeol;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.51-56
    • /
    • 2016
  • To fabricate a copper (Cu)-based fine conductive filler having antioxidation property, submicron silver (Ag)-coated Cu particles were fabricated and their antioxidation property was evaluated. After synthesizing the Cu particles of $0.705{\mu}m$ in average diameter by a wet-reduction process, Ag-coated Cu particles were fabricated by successive Ag plating using ethylene grycol solvent. Main process parameters in the Ag plating were the concentration of reductant (ascorbic acid), the injection rate of Ag precursor solution, and the stirring rate in mixed solution. Thus, Ag plating characteristics and the formation of separate fine pure Ag phase were observed with different combinations of process parameters. As a result, formation of the separate pure Ag phase and aggregation between Ag-coated Cu particles could be suppressed by optimization of the process parameters. The Ag-coated Cu particles which were fabricated using optimal conditions showed slight aggregation, but excellent antioxidation property. For example, the particles indicated the weight gain not exceeding 0.1% until $225^{\circ}C$ when they were heated in air at the rate of $10^{\circ}C/min$ and no weight gain until 75 min when they were heated in air at $150^{\circ}C$.

Heterogeneous nucleations in the polyol process for the preparation of fine cobalt particles (미립 코발트분말 합성을 위한 polyol공정에서 비균질계 핵생성 반응)

  • 김동진;정헌생;우상덕;이재장;안종관
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.2
    • /
    • pp.73-79
    • /
    • 2002
  • The polyol process which applies to cobalt, nickel. copper and precious metals is a interesting and unexpected example of such a method for preparing uniform metal powders. The reaction proceeds via dissolution, and the polyol acts simultaneously as a solvent, a reducing agent, and to some extent a protective agent. Submicrometer uniform cobalt particles can be obtained by seeding the reactive medium ($AgNO_3$) to achieve a complete substitution of homogeneous by heterogeneous nucleation. By varying the number of nuclei it is possible to control to some extent the average particle size in the submicrometer (0.5$\mu$m) range.

Electrostatic Beneficiation of Coal Fly Ash Utilizing Triboelectric Charging with Subsequent Electrostatic Separation

  • Lee, Jae-Keun;Kim, Seong-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.804-812
    • /
    • 2001
  • A triboelectrostatic separation system for removing unburned carbon from coal fly ash is designed and evaluated. Fly ash from a coal-fired power plant is used as an accepted additive in concrete where it adds strength, sulfate resistance and reduced cost, provided acceptable levels of unburned carbon are maintained. Unfortunately, unburned carbon in coal fly ash absorbs some of other additives and reduces the concrete strength. This paper describes to investigate dry triboelectrostatic process to separate unburned carbon from coal fly ash and utilize it into economically valuable products. The laboratory-scale triboelectrostatic separation system consists of a particle feeding system, a tribocharger, a separation chamber, and collection systems. Particles of unburned carbon and fly ash can be imparted positive and negative surface charges, respectively, with a copper tribocharger due to differences in the work function values of the particles and the tribocharger, and can be separated by passing them through an external electric field. Results showed that fly ash recovery was strongly dependent on the electric field strength and the particle size. 70wt% of fly ash containing 6.5wt% of carbon contents could be recovered at carbon contents below 3%. The triboelectrostatic separation system showed a potential to be an effective method for removing unburned carbon from coal fly ash.

  • PDF