• Title/Summary/Keyword: coordination failure

Search Result 45, Processing Time 0.02 seconds

A study on Protective Coordination of MCA for Performing of the Pad Mounted Transformer's inside Protective Device (지상변압기의 내부 보호장비 작동을 위한 MCA 보호협조에 대한 연구)

  • Hyun, Seung-Yoon;Kim, Chang-Hwan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.1
    • /
    • pp.5-7
    • /
    • 2022
  • KEPCO's plan is undergoing a trial operation to replace the open-loop section with ring main units configuration where underground distribution lines are installed, by linking the multi-way circuit breakers auto (MCA) on the power side of each pad-mounted transformer. However, ring main units application mentioned above may cause the ripple effects, when implementing the configuration without a study of protection coordination. Because ring main units with classical pre-set protection devices contribution in fault condition didn't consider yet. For the reliable ring main units operation, it is necessary to resolve several protection issues such as the protection coordination with substation side, prevention of the transformer inrush current. These issues can radically deteriorate the distribution system reliability Hence, it is essential to design proper protection coordination to reduce these types of problems. This paper presents a scheme of ring main units' configuration and MCA's settings of time-current curves to preserve the performance of protection coordination among the switchgears considering constraints, e.g. prevention of the ripple effects (on the branch section when a transformer failure occurs and the mainline when a branch line failure occurs). It was confirmed that the propagation of the failure for each interrupter segment could be minimized by applying the proposed TCC and the interrupter settings for the MCAs (branch, transformer). Further, it was verified that the undetected area of the distribution automation system (DAS) could be supplemented by having the MCA configurated ring main units operate first, instead of the internal protection equipment in the transformer such as the fuse, STP when a transformer failure occurs.

Shear behavior of the hollow-core partially-encased composite beams

  • Ye, Yanxia;Yao, Yifan;Zhang, Wei;Gao, Yue
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.883-898
    • /
    • 2022
  • A hollow-core partially-encased composite beam, named HPEC beam, is investigated in this paper. HPEC beam comprises I-beam, longitudinal reinforcement, stirrup, foam formwork, and cementitious grout. The foam formwork is located on both sides of the web, and cementitious grout is cast within the steel flange. To investigate the shear performance of HPEC beams, static loading tests of six HPEC beams and three control beams were conducted. The shear span ratio and the number of studs on the shear behavior of the HPECspecimens were studied. The failure mechanism was studied by analyzing the curves of shear force versus both deflection and strain. Based on the shear span ratio (𝜆), two typical shear failure modes were observed: shear compression failure when 1.6 ≤ 𝜆 ≤ 2; and diagonal compression failure when 𝜆 ≤ 1.15. Shear studs welded on the flange can significantly increase the shear capacity and integrity of HPEC beams. Flange welded shear studs are suggested. Based on the deformation coordination theory and superposition method, combined with the simplified modified compression field model and the Truss-arch model, Modified Deformation Coordination Truss-arch (M.D.C.T.) model was proposed. Compared with the shear capacity from YB9038-2006 and JGJ138-2016, the calculation results from M.D.C.T. model could provide reasonable predictions.

Research on Backup Protective Coordination for Distribution Network (네트워크 배전계통용 백업 보호협조에 관한 연구)

  • Kim, WooHyun;Chae, WooKyu;Hwang, SungWook;Kim, JuYong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.1
    • /
    • pp.15-19
    • /
    • 2022
  • The radial distribution systems (RDS) commonly used around the world has the following disadvantages. First, when the DL is operated on a radial system, the line utilization rate is usually kept low. Second, if a fault occurs in the radial DL, a power outage of 3 to 5 minutes is occurring depending on the operator's proficiency and fault situation until the fault section is separated and the normal section is replaced. To solve this problem, Various methods have been proposed at domestic and foreign to solve this problem, and in Korea, research is underway on the advanced system of operating multiple linked DL always. A system that is electrically linked always, and that is built to enable high-speed communication during the protection coordination is named networked distribution system (NDS). Because the load shares the DL, the line utilization rate can be improved, and even if the line faults, the normal section does not need to be cut off, so the normal section does not experience a power outage. However, since it is impossible to predict in which direction the fault current will flow when a failure occurs in the NDS, a communication-based protection coordination is used, but there is no backup protection coordination method in case of communication failure. Therefore, in this paper, we propose a protective cooperation method to apply as a backup method when communication fails in NDS. The new method is to change TCC by location of CB using voltage drop in case of fault.

Analysis of the Coordination Relationship and Muscle Fatigue of Agonist and Synergist During Dumbbell Side Lateral Raise Using Biosignals (생체신호를 이용한 덤벨 사이드 레터럴 레이즈 시 주동근과 협력근의 협응 관계 및 근피로 분석)

  • Jong min Kim;Chang hyun Song;Jun won Choi ;Han Sung Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.218-224
    • /
    • 2023
  • This study aimed to analyze the coordination of muscle and muscle fatigue between biceps, lateral deltoid, and anterior deltoid during dumbbell side lateral raise using bio-signal. One male subject performed dumbbell side lateral raise with 3% of 1RM dumbbell at the rate of 30bpm until failure (8 minutes). While performing, ECG were recorded to observe the participant's performance. EMG were recorded from biceps, lateral deltoid, and anterior deltoid for observing coordination and fatigue. ECG were analyzed in time and frequency domain to observe Heart rate, normLF, normHF. Changes in heart rate, normLF, and normHF indicate that the sympathetic nervous system is activated, while changes in median frequency (MDF) indicate the occurrence of muscle fatigue. Moreover, the coordination relationship of muscle changed. The correlation of MDF between each muscles indicated that lateral deltoid is associated with biceps and anterior deltoid. These results showed that our study can contribute to improving understanding of muscle fatigue and muscle coordination relationships.

Digital Knowledge Ecosystem to Reduce Uncertainty and Coordination Failure in Agricultural Markets - Study of "Govi Nena" Mobile-Based Information System

  • Sugathadasa, Lalinda;Ginige, Athula;Wikramanayake, Gihan;Goonetillake, Jeevani;De Silva, Lasanthi;Walisadeera, Anusha I.
    • Agribusiness and Information Management
    • /
    • v.8 no.1
    • /
    • pp.11-16
    • /
    • 2016
  • This paper presents how Digital Knowledge Ecosystem such as "Govi Nena" (translates as agriculture intelligence) can be used to provide a more effective and practical solution to eliminate the inefficiencies in agricultural markets and achieve higher productivity and price stability. In order to establish the framework to analyze the system, this paper uses a set of hypothetical scenarios faced by value chain actors based on a review of the literature, established knowledge and recent developing country experiences. The scenario analysis reveals that "Govi Nena" enables farmers to make effective production decisions, deepens the level of value chain integration, and enhances the level of welfare for the society as a whole.

Design Methodology of the Bus Configuration and Protection Coordination Basic Logics of Power Substation Using EMTP-RV (EMTP-RV를 이용한 변전소 모선 방식과 보호협조 기초 논리 설계 방법론에 대한 연구)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1129-1138
    • /
    • 2019
  • Since substations are structurally complex due to the concentration of protection coordination facilities with substation facilities for long distance power transmission, it is difficult to design a protection coordination system to minimize the spreading effect of the fault when a fault occurs on transmission line or distribution line. Therefore, in this paper, the bus configuration and the basic logic of protection coordination that have a major influence on the reliability of substation power supply were analyzed, and the substation protection coordination logic to detect internal and external faults was developed based on EMTP-RV. As the basic logic of substation protection coordination, the percent differential protection relay logic for substation internal fault detection and the overload protection relay logic for inference of external failure were modeled. Finally, the 154kV substation including the protection coordination logic was modeled using EMTP-RV, and the effectiveness of the protection coordination design methodology was confirmed through the several fault simulation cases based on EMTP-RV.

The plan for fault coordination improvement of underground distribution line (지중 배전선로의 보호협조 개선방안)

  • Ha, Bok-Mam;Yoon, Tae-Sang;Ilm, Seong-Il;Kang, Mun-Ho;Jeong, Chang-Soo;Lee, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.132-135
    • /
    • 2001
  • To improve the fault coordination of underground distribution line we study the several contents such as the magnitude of fault current in distribution line tripping time of CB by acting of over current relay with instantaneous trip and time delay trip. We also examine the melting time of current limiting fuse inside power fuse Through the research as above. we suggest the modification scheme of fault coordination to reduce the interruption times of power failure.

  • PDF

Fault Current Calculation and Coordination by IEC Standards (IEC 표준에 의한 고장전류 계산과 보호협조)

  • Son, Seok-Geum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.6-12
    • /
    • 2014
  • The safety and reliability of the power system short-circuit current, the short-circuit current depends on the failure to obtain the objective is to quickly eliminate the breaking capacity of the circuit-breaker selection of the cable, the insulation of electrical equipment and protective relay an important factor in determining the level correction and protective relay selection scheme to be meaningful. Standards used in the domestic circuit breaker is applied to the production of IEC standard, but the American National Standards (ANSI / IEEE) by NEMA specification of the fault current calculations and the application of the asymmetric coefficient Korea. Therefore, in this paper, the IEC 60909 standard IEC breaker fault current calculation method and the method for selection of system configurations reviewed and protection system for reviewing the configuration of various protective relays appropriate correction and the correction value is main protection, back-up protection the equipment so that the period of protection relay coordination to minimize accidents and accident protection to minimize interruptions proposed for cooperation.

Optimal Ordering Policy in Dual-Sourcing Supply Chain Considering Supply Disruptions and Demand Information

  • Watanabe, Naoki;Kusukawa, Etsuko
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.2
    • /
    • pp.129-158
    • /
    • 2015
  • It is necessary for retailers to determine the optimal ordering policy of products considering supply disruptions due to a natural disaster and a production process failure as quality and machine breakdowns. Under the situation, a dualsourcing supply chain (DSSC) is one of effective SC for retailers to order products reliably. This paper proposes the optimal ordering policy of a product in a DSSC with a retailer and two manufacturers. Two manufacturers may face supply disruptions due to a natural disater and a production process failure after they received the retailer's order of products. Here, two scenarios of demand information of products are assumed: (i) the demand distribution is known (ii) mean and variance of the demand are known. Under above situations, two types of DSSC are discussed. Under a decentralized DSSC (DSC), a retailer determines the optimal ordering policy to maximize his/her total expected profit. Under the integrated DSSC (ISC), the optimal ordering policy is determined to maximize the whole system's total expected profit. Numerical analysis investigates how demand information and supply disruptions affect the optimal decisions under DSC and ISC. Besides, profitability of supply chain coordination adjusting the wholesale price is evaluated to encourage the optimal decision under ISC.

Remote Fault Diagnosis Method of Wind Power Generation Equipment Based on Internet of Things

  • Bing, Chen;Ding, Liu
    • Journal of Information Processing Systems
    • /
    • v.18 no.6
    • /
    • pp.822-829
    • /
    • 2022
  • According to existing study into the remote fault diagnosis procedure, the current diagnostic approach has an imperfect decision model, which only supports communication in a close distance. An Internet of Things (IoT)-based remote fault diagnostic approach for wind power equipment is created to address this issue and expand the communication distance of fault diagnosis. Specifically, a decision model for active power coordination is built with the mechanical energy storage of power generation equipment with a remote diagnosis mode set by decision tree algorithms. These models help calculate the failure frequency of bearings in power generation equipment, summarize the characteristics of failure types and detect the operation status of wind power equipment through IoT. In addition, they can also generate the point inspection data and evaluate the equipment status. The findings demonstrate that the average communication distances of the designed remote diagnosis method and the other two remote diagnosis methods are 587.46 m, 435.61 m, and 454.32 m, respectively, indicating its application value.