• Title/Summary/Keyword: coordinated computing

Search Result 21, Processing Time 0.024 seconds

Optimal control for voltage and reactive power using piecewise method (분할수법을 이용한 전압무효전력의 최적제어)

  • 유석구;임화영
    • 전기의세계
    • /
    • v.31 no.5
    • /
    • pp.375-382
    • /
    • 1982
  • The optimum control of voltage and reactive power in large system requires large amounts of complicated calculation. If the large power system is controlled by the centralized control scheme, the necessary computing time, memory requirments and data transmission channels increase exponetially, and computer control of the system becomes difficult. Piecewise method which aims at the reduction of the difficulties of centralized control scheme is to decompose a large power system into several subsystems, each of which is controlled by a local computer and the control efforts of each subsystem are coordinated by a central computer. Unless sufficient coordination is made between subsystems, the control quality may become very poor. This paper describes how piecewise method can be applied in the optimal control of voltage and reactive power in large system, and presents effective calaulating algorithm for the solution of the problem. The numerical example for model system is presented here.

  • PDF

KAWS: Coordinate Kernel-Aware Warp Scheduling and Warp Sharing Mechanism for Advanced GPUs

  • Vo, Viet Tan;Kim, Cheol Hong
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1157-1169
    • /
    • 2021
  • Modern graphics processor unit (GPU) architectures offer significant hardware resource enhancements for parallel computing. However, without software optimization, GPUs continuously exhibit hardware resource underutilization. In this paper, we indicate the need to alter different warp scheduler schemes during different kernel execution periods to improve resource utilization. Existing warp schedulers cannot be aware of the kernel progress to provide an effective scheduling policy. In addition, we identified the potential for improving resource utilization for multiple-warp-scheduler GPUs by sharing stalling warps with selected warp schedulers. To address the efficiency issue of the present GPU, we coordinated the kernel-aware warp scheduler and warp sharing mechanism (KAWS). The proposed warp scheduler acknowledges the execution progress of the running kernel to adapt to a more effective scheduling policy when the kernel progress attains a point of resource underutilization. Meanwhile, the warp-sharing mechanism distributes stalling warps to different warp schedulers wherein the execution pipeline unit is ready. Our design achieves performance that is on an average higher than that of the traditional warp scheduler by 7.97% and employs marginal additional hardware overhead.

B-COV:Bio-inspired Virtual Interaction for 3D Articulated Robotic Arm for Post-stroke Rehabilitation during Pandemic of COVID-19

  • Allehaibi, Khalid Hamid Salman;Basori, Ahmad Hoirul;Albaqami, Nasser Nammas
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.110-119
    • /
    • 2021
  • The Coronavirus or COVID-19 is contagiousness virus that infected almost every single part of the world. This pandemic forced a major country did lockdown and stay at a home policy to reduce virus spread and the number of victims. Interactions between humans and robots form a popular subject of research worldwide. In medical robotics, the primary challenge is to implement natural interactions between robots and human users. Human communication consists of dynamic processes that involve joint attention and attracting each other. Coordinated care involves sharing among agents of behaviours, events, interests, and contexts in the world from time to time. The robotics arm is an expensive and complicated system because robot simulators are widely used instead of for rehabilitation purposes in medicine. Interaction in natural ways is necessary for disabled persons to work with the robot simulator. This article proposes a low-cost rehabilitation system by building an arm gesture tracking system based on a depth camera that can capture and interpret human gestures and use them as interactive commands for a robot simulator to perform specific tasks on the 3D block. The results show that the proposed system can help patients control the rotation and movement of the 3D arm using their hands. The pilot testing with healthy subjects yielded encouraging results. They could synchronize their actions with a 3D robotic arm to perform several repetitive tasks and exerting 19920 J of energy (kg.m2.S-2). The average of consumed energy mentioned before is in medium scale. Therefore, we relate this energy with rehabilitation performance as an initial stage and can be improved further with extra repetitive exercise to speed up the recovery process.

Development of a Cycle-free Based, Coordinated Dynamic Signal Timing Model for Minimizing Queue-Lengths (Using Genetic Algorithm) (대기차량 최소화를 위한 주기변동기반 (Cycle-free based) 동적 신호시간 결정모형 개발)

  • 이영인;임재승;윤경섭
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.2
    • /
    • pp.73-89
    • /
    • 2000
  • This Paper documents the development of a cycle free based, coordinated dynamic signal timing model for minimizing queue lengths using Genetic A1gorithm. The model was embodied using MAT-LAB, the language of technical computing. A special feature of this model is its ability to manage queue lengths of turning movements at the start of green times. The model produces a cycle-free based signal timing(cycles and green times) for each intersection to minimize queue lengths of turning movements on the cycle basis. Concurrently, appropriate offsets could be accomplished by applying cycle-free based signal timings for respective intersections. The model was applied to an example network which consists of three intersections. The result shows that the model produces superior signal timings to the existing signal timing model in terms of managing queue lengths of turning movements.

  • PDF

An Imbedded System for Time Synchronization in Distributed Environment based on the Internet (인터넷 기반 분산 환경에서 시각 동기를 위한 임베디드 시스템)

  • Hwang So-Young;Yu Dong-Hui;Li Ki-Joune
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.3
    • /
    • pp.216-223
    • /
    • 2005
  • A computer clock has limits in accuracy and precision affected by its inherent instability, the environment elements, the modification of users, and errors of the system. So the computer clock needs to be synchronized with a standard clock if the computer system requires the precise time processing. The purpose of synchronizing clocks is to provide a global time base throughout a distributed system. Once this time base exists, transactions among members of distributed system can be controlled based on time. This paper discusses the integrated approach to clock synchronization. An embedded system is considered for time synchronization based on the GPS(Global Positioning System) referenced time distribution model. The system uses GPS as standard reference time source and offers UTC(Universal Time Coordinated) through NTP(Network Time Protocol). A clock model is designed and adapted to keep stable time and to provide accurate standard time with precise resolution. Private MIB(Management Information Base) is defined for network management. Implementation results and performance analysis are also presented.

Ancillary Service Requirement Assessment Indices for the Load Frequency Control in a Restructured Power System with Redox Flow Batteries

  • Chandrasekar, K.;Paramasivam, B.;Chidambaram, I.A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1535-1547
    • /
    • 2016
  • This paper proposes various design procedures for computing Power System Ancillary Service Requirement Assessment Indices (PSASRAI) for a Two-Area Thermal Reheat Interconnected Power System (TATRIPS) in a restructured environment. In an interconnected power system, a sudden load perturbation in any area causes the deviation of frequencies of all the areas and also in the tie-line powers. This has to be corrected to ensure the generation and distribution of electric power companies to ensure good quality. A simple Proportional and Integral (PI) controllers have wide usages in controlling the Load Frequency Control (LFC) problems. So the design of the PI controller gains for the restructured power system are obtained using Bacterial Foraging Optimization (BFO) algorithm. From the simulation results, the PSASRAI are calculated based on the settling time and peak over shoot concept of control input deviations of each area for different possible transactions. These Indices are useful for system operator to prepare the power system restoration plans. Moreover, the LFC loop coordinated with Redox Flow Batteries (RFB) has greatly improved the dynamic response and it reduces the control input requirements and to ensure improved PSASRAI, thereby improving the system reliability.

Adaptive Truncation technique for Constrained Multi-Objective Optimization

  • Zhang, Lei;Bi, Xiaojun;Wang, Yanjiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5489-5511
    • /
    • 2019
  • The performance of evolutionary algorithms can be seriously weakened when constraints limit the feasible region of the search space. In this paper we present a constrained multi-objective optimization algorithm based on adaptive ε-truncation (ε-T-CMOA) to further improve distribution and convergence of the obtained solutions. First of all, as a novel constraint handling technique, ε-truncation technique keeps an effective balance between feasible solutions and infeasible solutions by permitting some excellent infeasible solutions with good objective value and low constraint violation to take part in the evolution, so diversity is improved, and convergence is also coordinated. Next, an exponential variation is introduced after differential mutation and crossover to boost the local exploitation ability. At last, the improved crowding density method only selects some Pareto solutions and near solutions to join in calculation, thus it can evaluate the distribution more accurately. The comparative results with other state-of-the-art algorithms show that ε-T-CMOA is more diverse than the other algorithms and it gains better in terms of convergence in some extent.

Global Time Synchronization for Wireless Sensor Networks (무선 센서 네트워크를 위한 전역 시각 동기 기법)

  • Hwang, So-Young;Yu, Don-Hui;Joo, Jae-Heum;Won, Sung-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.84-86
    • /
    • 2010
  • Time information and time synchronization are fundamental building blocks in wireless sensor networks since many sensor network applications need time information for object tracking, consistent state updates, duplicate detection and temporal order delivery. Various time synchronization protocols have been proposed for sensor networks because of the characteristics of sensor networks which have limited computing power and resources. However, none of these protocols have been designed with time representation scheme in mind. Global time format such as UTC TOD (Universal Time Coordinated, Time Of Day) is very useful in sensor network applications. In this paper we propose time keeping and synchronization method for global time presentation in wireless sensor networks.

  • PDF

State of Information Technology and Its Application in Agricultural Meteorology (농업기상활용 정보기술 현황)

  • Byong-Lyol Lee;Dong-Il Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.2
    • /
    • pp.118-126
    • /
    • 2004
  • Grid is a new Information Technology (IT) concept of "super Internet" for high-performance computing: worldwide collections of high-end resources such as supercomputers, storage, advanced instruments and immerse environments. The Grid is expected to bring together geographically and organizationally dispersed computational resources, such as CPUs, storage systems, communication systems, real-time data sources and instruments, and human collaborators. The term "the Grid" was coined in the mid1990s to denote a proposed distributed computing infrastructure for advanced science and engineering. The term computational Grids refers to infrastructures aimed at allowing users to access and/or aggregate potentially large numbers of powerful and sophisticated resources. More formally, Grids are defined as infrastructure allowing flexible, secure, and coordinated resource sharing among dynamic collections of individuals, institutions and resources referred to as virtual Organizations. GRID is an emerging IT as a kind of next generation Internet technology which will fit very well with agrometeorological services in the future. I believe that it would contribute to the resource sharing in agrometeorology by providing super computing power, virtual storage, and efficient data exchanges, especially for developing countries that are suffering from the lack of resources for their agmet services at national level. Thus, the establishment of CAgM-GRID based on existing RADMINSII is proposed as a part of FWIS of WMO.part of FWIS of WMO.

Network Time Protocol Extension for Wireless Sensor Networks (무선 센서 네트워크를 위한 인터넷 시각 동기 프로토콜 확장)

  • Hwang, So-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2563-2567
    • /
    • 2011
  • Advances in smart sensors, embedded systems, low-power design, ad-hoc networks and MEMS have allowed the development of low-cost small sensor nodes with computation and wireless communication capabilities that can form distributed wireless sensor networks. Time information and time synchronization are fundamental building blocks in wireless sensor networks since many sensor network applications need time information for object tracking, consistent state updates, duplicate detection and temporal order delivery. Various time synchronization protocols have been proposed for sensor networks because of the characteristics of sensor networks which have limited computing power and resources. However, none of these protocols have been designed with time representation scheme in mind. Global time format such as UTC TOD (Universal Time Coordinated, Time Of Day) is very useful in sensor network applications. In this paper we propose network time protocol extension for global time presentation in wireless sensor networks.