• Title/Summary/Keyword: coordinate system

Search Result 2,222, Processing Time 0.03 seconds

New Medical Image Fusion Approach with Coding Based on SCD in Wireless Sensor Network

  • Zhang, De-gan;Wang, Xiang;Song, Xiao-dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2384-2392
    • /
    • 2015
  • The technical development and practical applications of big-data for health is one hot topic under the banner of big-data. Big-data medical image fusion is one of key problems. A new fusion approach with coding based on Spherical Coordinate Domain (SCD) in Wireless Sensor Network (WSN) for big-data medical image is proposed in this paper. In this approach, the three high-frequency coefficients in wavelet domain of medical image are pre-processed. This pre-processing strategy can reduce the redundant ratio of big-data medical image. Firstly, the high-frequency coefficients are transformed to the spherical coordinate domain to reduce the correlation in the same scale. Then, a multi-scale model product (MSMP) is used to control the shrinkage function so as to make the small wavelet coefficients and some noise removed. The high-frequency parts in spherical coordinate domain are coded by improved SPIHT algorithm. Finally, based on the multi-scale edge of medical image, it can be fused and reconstructed. Experimental results indicate the novel approach is effective and very useful for transmission of big-data medical image(especially, in the wireless environment).

Stereo Vision Based 3-D Motion Tracking for Human Animation

  • Han, Seung-Il;Kang, Rae-Won;Lee, Sang-Jun;Ju, Woo-Suk;Lee, Joan-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.6
    • /
    • pp.716-725
    • /
    • 2007
  • In this paper we describe a motion tracking algorithm for 3D human animation using stereo vision system. This allows us to extract the motion data of the end effectors of human body by following the movement through segmentation process in HIS or RGB color model, and then blob analysis is used to detect robust shape. When two hands or two foots are crossed at any position and become disjointed, an adaptive algorithm is presented to recognize whether it is left or right one. And the real motion is the 3-D coordinate motion. A mono image data is a data of 2D coordinate. This data doesn't acquire distance from a camera. By stereo vision like human vision, we can acquire a data of 3D motion such as left, right motion from bottom and distance of objects from camera. This requests a depth value including x axis and y axis coordinate in mono image for transforming 3D coordinate. This depth value(z axis) is calculated by disparity of stereo vision by using only end-effectors of images. The position of the inner joints is calculated and 3D character can be visualized using inverse kinematics.

  • PDF

The Development of a Sliding Joint for Very Flexible Multibody Dynamics (탄성 대변형 다물체동역학을 위한 슬라이딩조인트 개발)

  • Seo Jong-Hwi;Jung Il-Ho;Sugiyama Hiroyuki;Shabana Ahmed A.;Park Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1123-1131
    • /
    • 2005
  • In this paper, a formulation for a spatial sliding joint, which a general multibody can move along a very flexible cable, is derived using absolute nodal coordinates and non-generalized coordinate. The large deformable motion of a spatial cable is presented using absolute nodal coordinate formulation, which is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. And the non-generalized coordinate, which is neither related to the inertia forces nor external forces, is used to describe an arbitrary position along the centerline of a very flexible cable. In the constraint equation for the sliding joint, since three constraint equations are imposed and one non-generalized coordinate is introduced, one constraint equation is systematically eliminated. Therefore, there are two independent Lagrange multipliers in the final system equations of motion associated with the sliding joint. The development of this sliding joint is important to analyze many mechanical systems such as pulley systems and pantograph/catenary systems for high speed-trains.

An Application of Coordinate Transformation Method on Lubricating Characteristics of Negative Pressure Slider

  • Hwang, Pyung;Park, Sang-Shin;Kim, Eun-Hyo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.285-286
    • /
    • 2002
  • The lubricating characteristics of negative pressure slider were performed by using divergence formulation method with the coordinate transformation method. This method makes it possible to deal with an arbitrary configuration of a lubricated surface. The pressure profile of the slider is calculated. These results are compared to that from direct numerical method. The steady-state, including minimum film thickness, pitching and rolling angle are calculated by multi-dimensional Newton-Rapson method. The stiffness and damping characteristics are also calculated.

  • PDF

A Modified Method for the Boundary Fitted Coordinate Systems to Analysis of Gas Bearings Considering Upstream In Extremely High Compressibility Number Region

  • Khan, Polina;Hwang, Pyung;Park, Sang-Shin
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.105-106
    • /
    • 2002
  • An expanded scheme of direct numerical solution method for solving the Reynolds' equation in the boundary fitted coordinate systems for the gas lubrication with ultra low clearance is presented. Skewed slider is calculated by this scheme and results are compared to the original direct numerical solution. The modified scheme has advantages in stability in high compressibility number region. At the lower A region the difference in results of original and modified method is several percents.

  • PDF

Physical property control for a batch polymerization reactor

  • Kim, In-Sun;Ahn, Sung-Mo;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.263-266
    • /
    • 1996
  • A method to determine an optimal temperature trajectory that guarantees polymer products having controlled molecular weight distribution and desired values of molecular weight is presented. The coordinate transformation method and the optimal control theory are applied to a batch PMMA polymerization system to calculate the optimal temperature trajectory. Coordinate transformation method converts the original fixed-end-point, free-end-time problem to a free-end-point, fixed-end-time problem. The idea is that by making the reactor temperature track the optimal temperature trajectory one may be able to produce polymer products having the prespecified physical property in a minimum time. The on-line control experiments with the PID control algorithm have been conducted to establish the validity of the scheme proposed in this study. The experimental results show that prespecified polymer product could be obtained with tracking the calculated optimal temperature trajectory.

  • PDF

Path planning in AUV Intelligent control system using relative grid unit coordinate model (자율무인잠수정 지능제어시스템의 상대적 격자좌표 모형을 이용한 경로설정)

  • 민종수;김창민;김용기
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.347-350
    • /
    • 1999
  • 자율무인잠수정은 자율운항을 위해서 자동화된 제어시스템이 필요하다. 제어시스템은 기능적 측면에서 임무계획단계(mission planning level), 임무제어단계(mission control level), 선체제어단계(vehicle control level)로 구분한다. 자율무인잠수정의 효과적인 임무 수행을 위해서는 임무제어단계의 운행 경로 설정과 제어가 중요하다. 자율무인잠수정은 잠수정의 주변환경을 추상화한 후 탐색기법을 이용하여 경로를 설정한다. 이때 검색기법의 효율적 적용을 위해서는 효과적으로 추상화된 탐색모형이 필요하다. 대표적인 탐색모형으로는 3차원 격자절대좌표 모형(3-dimensional grid unit coordinate model)(1)을 들 수 있다. 그러나 이 모형은 불필요한 동작의 반복, 이동 격자에 따른 비일관성과 같은 취약점이 존재한다. 본 연구에서는 이 모형의 취약점을 개선하기 위해서 자율무인잠수정의 위치 기반 상대적 격자좌표 모형(relative grid unit coordinate model based on AUV state)을 제안한다.

  • PDF

Directionally Transparent Energy Bounding Approach for Multiple Degree-of-Freedom Haptic Interaction

  • Kim, Jae-Ha;Kim, Jong-Phil;Seo, Chang-Hoon;Ryu, Je-Ha
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.2068-2071
    • /
    • 2009
  • This paper presents a multiple degree-of-freedom (dof) energy bounding approach (EBA) to enhance directional transparency while guaranteeing stability for multiple-dof haptic interaction. It was observed that the passivity condition for multiple ports may lead to some oscillatory limit cycle behaviors in some coordinate directions even though the total sum of energy flow-in is positive, meaning that the system is passive. The passivity condition, therefore, needs to be applied to each coordinate in order to avoid oscillatory behavior by keeping each energy flow-in always positive. For guaranteeing passivity, which in turn, stability in each coordinates, the EBA is applied. For multiple-dof haptic interaction, however, the EBA in each coordinate may distort the direction of the force vector to be rendered since the EBA may cut down the magnitude of the force and torque vectors to be rendered in order to ensure the passivity. For avoiding this problem, a simple projection method is presented. The validity of the proposed algorithm is shown by several experiments.

  • PDF

Variable Structure Control using Inertial Coordinate-Operator Feedback (Inertial Coordinate-Operator Feedback을 이용한 가변구조제어)

  • You, Wan-Sik;Hur, Young-Jae;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.465-467
    • /
    • 1994
  • A VSC with Inertial COFB(Coordinate-Operator Feedback) is presented for chattering alleviation. Athought the conventional sliding mode controller has good properties of robustness for disturbances or parameter variations, fast response, and easy implementation, there exists an inevitable chattering problem which deteriorates the control performance of system. VSC using Inertial COFB has properties of bounded feedback gain, reduced chattering, and robustness for disturbances or parameter variations. The validity of the proposed method is demonstrated through computer simulation for a position control of BLDCM.

  • PDF

New Method of Visual Servoing using an Uncalibrated Camera and a Calibrated Robot

  • Morita, Masahiko;Shigeru, Uchikado;Yasuhiro, Osa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.41.4-41
    • /
    • 2002
  • In this paper we deal with visual servoing that can control a robot arm with a camera using information of images only, without estimating 3D position and rotation of the robot arm. Here it is assumed that the robot arm is calibrated and the camera is uncalibrated. Here we consider two coordinate systems, the world coordinate system and the camera coordinate one and we use a pinhole camera model as the camera one. First of all, the essential notion can be show, that is, epipolar geometry, epipole, epipolar equation, and epipolar constrain. And these plays an important role in designing visual servoing in the later chapters. Statement of the problem is giver. Provided two a priori...

  • PDF