• Title/Summary/Keyword: coordinate plane

Search Result 270, Processing Time 0.035 seconds

Development of multi-object image processing algorithm in a image plane (한 이미지 평면에 있는 다물체 화상처리 기법 개발)

  • 장완식;윤현권;김재확
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.555-555
    • /
    • 2000
  • This study is concentrated on the development of hight speed multi-object image processing algorithm, and based on these a1gorithm, vision control scheme is developed for the robot's position control in real time. Recently, the use of vision system is rapidly increasing in robot's position centre. To apply vision system in robot's position control, it is necessary to transform the physical coordinate of object into the image information acquired by CCD camera, which is called image processing. Thus, to control the robot's point position in real time, we have to know the center point of object in image plane. Particularly, in case of rigid body, the center points of multi-object must be calculated in a image plane at the same time. To solve these problems, the algorithm of multi-object for rigid body control is developed.

  • PDF

Error Assessment of CMM by Self-calibration Method (자가 보정 방법을 이용한 삼차원 측정기의 계통 오차 추출)

  • 유승봉;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.379-382
    • /
    • 2002
  • Among the CMM calibration techniques, the calibration with standard specimen is most accurate way to acquire the required precision. When there is no standard specimen, the calibration of CMM with itself is possible. This calibration method is called "self-calibration". In this paper, we developed self-calibration algorithm for CMM XY plane. It is possible to calculate the in-plane error and out-of-plane error of CMM with 3 different measurement of same artifact. Experimental result shows that the non-orthogonality error is dominant in in-plane error and the self-calibration result and laser interferometer measured result have almost same value.ame value.

  • PDF

TIN Based Geometric Correction with GCP

  • Seo, Ji-Hun;Jeong, Soo;Kim, Kyoung-Ok
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.247-253
    • /
    • 2003
  • The mainly used technique to correct satellite images with geometric distortion is to develop a mathematical relationship between pixels on the image and corresponding points on the ground. Polynomial models with various transformations have been designed for defining the relationship between two coordinate systems. GCP based geometric correction has peformed overall plane to plane mapping. In the overall plane mapping, overall structure of a scene is considered, but local variation is discarded. The Region with highly variant height is rectified with distortion on overall plane mapping. To consider locally variable region in satellite image, TIN-based rectification on a satellite image is proposed in this paper. This paper describes the relationship between GCP distribution and rectification model through experimental result and analysis about each rectification model. We can choose a geometric correction model as the structural characteristic of a satellite image and the acquired GCP distribution.

Free In-plane Vibration of a Clamped Circular Plate (고정된 원형 플레이트의 평면내 자유진동)

  • Park, Chan-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.836-839
    • /
    • 2005
  • The in-plane vibration response of a clamped circular plate should be predicted in many applications. Up to now, papers on the in-plane vibration of rectangular plate are published. However, analytical derivation on the in-plane vibration of the clamped circular plate is not carried out. Therefore, the in-plane vibration of the clamped circular plate is the concern of this paper. In order to derive the equations of motion for the clamped circular plate in the cylindrical coordinate, the kinetic energy and potential energy for the in-plane behavior are obtained by us ing the stress-strain-displacement expressions. Application of Hamilton's principle leads to two sets of differential equations. These displacement equations were highly coupled. It is possible to obtain a simpler set of equations by introducing Helmholtz decomposition. Substituting them into the coupled differential equations, we obtain the uncoupled equations of motion. In order to solve them, we assume that the solutions are harmonic. Then, they lead to the wave equations. Using the separation of variable, we obtain the general solutions for the equations. Based on the solutions, the displacements for r and $\theta$ direction are assumed. Finally we obtain the frequency equation for the clamped circular plate by the application of boundary conditions. The derived equation is compared with the finite element analysis for validation by using the some numerical examples.

  • PDF

A Study on the application of planning national index numbers in the Cadastral triangulation point (지적삼각(보조)점의 국가지점번호 활용방안에 관한 연구)

  • Lee, Hyong-Sam;Shin, Soon-Ho;Sung, Yeon-Dong
    • Journal of Cadastre & Land InformatiX
    • /
    • v.45 no.2
    • /
    • pp.45-56
    • /
    • 2015
  • The main purpose of this investigation is to make up for the limitations of parcel addressing and to seek the application plan of cadastral triangulation point to effective installation of national index numbers. The test-bed has been constructed at the mountainous area located in Nowon-gu, seven cadastral triangulation points within the test-bed was directly applied to this investigation. Each points have been firstly converted from a plane rectangular coordinates to a single plane rectangular coordinates (UTM-K). To verify positioning results achieved from these points, a single plane rectangular coordinates through the Network-RTK was considered. With regards to verification result, maximum coordinate shift was revealed by 6 cm, this level of difference can be satisfied to Article 7, paragraph 2 "the regulation for National Index Number". This means that coordinate transformation applied with cadastral triangulation points can achieve the sastisfied result without local surveying. And also, remarkable effects have been created in terms of financial effectiveness and safe preservation of cadastral triangulation points due to the omission of local surveying.

Development of Ship Route Track System Based on Digital Sea Chart with the Capability of Precise Coordinate Analysis of GPS

  • Kang, In-Joon;Kang, Ho-Yun;Chang, Yong-Ku;Mun, Do-Yeoul
    • Korean Journal of Geomatics
    • /
    • v.3 no.1
    • /
    • pp.7-14
    • /
    • 2003
  • For GIS to land and sea in Korea, GIS on land was almost completed with big cities by NGIS(National Geographic Information System) business. However, MGIS(Marine Geographic Information System) being constructed by the National Oceanographic Research Institute is still constructing geography information and definition of attribute information and real condition. We are being studied on research to get maximized the ripple effect linking GPS and Navigation techniques on GIS. GPS in accuracy is divided into navigation and precise surveying equipment. Now, GPS technology has been developed very much and low price GPS equipments are introducing. But expense on GPS equipment is high yet. Therefore, GPS equipment for navigation is used on cheap GPS equipment in a car or ship. In this paper, the author used algorithm to convert ellipsoid coordinate between WGS84 and Bessel ellipsoid and to analyze map projection between BESSEL ellipsoid and UTM plane coordinate system. And the author developed ship navigation system with cheap GPS equipment using algorithm of ellipsoid conversion and map projection. The author proposed the necessity on constructing MGIS to manage many ships.

  • PDF

Improved Rendering on Spherical Coordinate System using Convex Hull (컨벡스 헐을 이용한 개선된 구 좌표계 기반 렌더링 방법)

  • Kim, Nam-Jung;Hong, Hyun-Ki
    • Journal of Korea Game Society
    • /
    • v.10 no.1
    • /
    • pp.157-165
    • /
    • 2010
  • This paper presents a novel real-time rendering algorithm based on spherical coordinate system of the object using convex hull. While OpenGL rendering pipeline touches all vertices of an object, the proposed method takes account the only visible vertices by examining the visible triangles of the object. In order to determine the visible areas of the object in its spherical coordinate representation, the proposed method uses 3D geometric relation of 6 plane equations of the camera frustum and the bounding sphere of the object. In addition, we compute the convex hull of the object and its maximum side factors for hidden surface removal. Simulation results showed that the quality of result image is almost same compared to original image and rendering performance is greatly improved.

Underwater E-plane Attenuation Model of Omnidirectional Antenna Using Half Power Beam Width (HPBW) (반전력빔폭을 이용한 전방향성 안테나의 수중 환경 수직 평면 감쇠 모델)

  • Kwak, Kyungmin;Park, Daegil;Kim, Younghyeon;Chung, Wan Kyun;Kim, Jinhyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1050-1056
    • /
    • 2015
  • In this paper, we use the characteristics of electromagnetic waves underwater attenuation for estimating linear distance between a transmitting node and receiving node, and research underwater vertical plane attenuation model for constructing the underwater localization system. The underwater localization of 2 dimensional with the plane attenuation model in the horizontal plane (H-plane) was proposed previous research. But for the 3 dimensional underwater localization, the additional vertical plane (E-plane) model should be considered. Because the horizontal plane of omnidirectional antenna has the same attenuation tendency in x-y plane according to the distance, whereas in vertical plane shows an irregular pattern in x-z plane. For that reason, in the vertical plane environment, the attenuation should be changed by the position and inclination. Hence, in this paper the distance and angle between transmitting and receiving node are defined using spherical coordinate system and derive an antenna gain pattern using half power beam width (HPBW). The HPBW is called a term which defines antenna's performance between isotropic and other antennas. This paper derives omnidirectional antenna's maximum gain and attenuation pattern model and define vertical plane's gain pattern model using HPBW. Finally, experimental verifications for the proposed underwater vertical plane's attenuation model was executed.

The 3D Geometric Information Acquisition Algorithm using Virtual Plane Method (가상 평면 기법을 이용한 3차원 기하 정보 획득 알고리즘)

  • Park, Sang-Bum;Lee, Chan-Ho;Oh, Jong-Kyu;Lee, Sang-Hun;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1080-1087
    • /
    • 2009
  • This paper presents an algorithm to acquire 3D geometric information using a virtual plane method. The method to measure 3D information on the plane is easy, because it's not concerning value on the z-axis. A plane can be made by arbitrary three points in the 3D space, so the algorithm is able to make a number of virtual planes from feature points on the target object. In this case, these geometric relations between the origin of each virtual plane and the origin of the target object coordinates should be expressed as known homogeneous matrices. To include this idea, the algorithm could induce simple matrix formula which is only concerning unknown geometric relation between the origin of target object and the origin of camera coordinates. Therefore, it's more fast and simple than other methods. For achieving the proposed method, a regular pin-hole camera model and a perspective projection matrix which is defined by a geometric relation between each coordinate system is used. In the final part of this paper, we demonstrate the techniques for a variety of applications, including measurements in industrial parts and known patches images.

Useful Image Back-projection Properties in Cameras under Planar and Vertical Motion (평면 및 수직 운동하는 카메라에서 유용한 영상 역투영 속성들)

  • Kim, Minhwan;Byun, Sungmin
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.7
    • /
    • pp.912-921
    • /
    • 2022
  • Autonomous vehicles equipped with cameras, such as robots, fork lifts, or cars, can be found frequently in industry sites or usual life. Those cameras show planar motion because the vehicles usually move on a plane. Sometimes the cameras in fork lifts moves vertically. The cameras under planar and vertical motion provides useful properties for horizontal or vertical lines that can be found easily and frequently in our daily life. In this paper, some useful back-projection properties are suggested, which can be applied to horizontal or vertical line images captured by a camera under planar and vertical motion. The line images are back-projected onto a virtual plane that is parallel to the planar motion plane and has the same orientation at the camera coordinate system regardless of camera motion. The back-projected lines on the virtual plane provide useful information for the world lines corresponding to the back-projected lines, such as line direction, angle between two horizontal lines, length ratio of two horizontal lines, and vertical line direction. Through experiments with simple plane polygons, we found that the back-projection properties were useful for estimating correctly the direction and the angle for horizontal and vertical lines.