• Title/Summary/Keyword: coordinate measuring machine

Search Result 133, Processing Time 0.024 seconds

A Study on Rotary Type Embossing Process System for Spacer Tape Production (스페이서 테이프 생산을 위한 회전형 엠보싱 처리 시스템에 대한 연구)

  • Han, Seung-Chul;Kim, Jin-Ho;Lee, Sung-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2458-2464
    • /
    • 2012
  • Recently, component materials for display are being developed into higher value-added industries which can strengthen national industrial competitiveness. However, a system for production of component materials for display is nearly depending on import, and its development level is inadequate. For this reason, localization of the embossing treatment system for production of the spacer tape and system improvement for increasing of productivity are needed. Therefore, in this paper, we propose rotary type embossing process system for spacer tape production for localization of system and increasing productivity. The system consists of unwinding, forming, cleaning, winding and testing parts. The mold of forming part is designed to rotary type. And we designed each part and made a prototype to test its performance. We measured embossing shapes, diameter and distance between each embossing and opposite embossing using three coordinate measuring machine. Also, we measured impurity level and the number of impurity particles of sample through the testing and cleaning part. Additionally, the productivity of spacer tape produced by the prototype is measured.

Measurement of Large Mirror Surface using a Laser Tracker (레이저트래커(Laser Tracker)를 이용한 대형 광학 거울의 형상 측정)

  • Jo, Eun-Ha;Yang, Ho-Soon;Lee, Yun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.6
    • /
    • pp.331-337
    • /
    • 2013
  • A large optical surface is fabricated by grinding, polishing and figuring. The grinding process is the most rapid and has the largest amount of fabrication of all processes. If we measure the surface precisely and rapidly in the grinding process, it is possible to improve the efficiency of the fabrication process. Since the surface of grinding process is rough and not shiny, it is not easy to measure the surface using light so that we cannot use an interferometer. Therefore, we have to measure the surface using a mechanical method. We can measure the surface under the grinding process by using a laser tracker which is a portable 3-dimensional coordinate measuring machine. In this paper, we used the laser tracker to measure the surface error of 1 m diameter spherical mirror. This measurement result was compared to that of an interferometer. As a result, surface measurement error was found to be $0.2{\mu}m$ rms (root mean square) and $2.7{\mu}m$ PV (Peak to Valley), which is accurate enough to apply to the rough surface under the grinding stage.

A Study on the Thermo-Mechanical Stress of MEMS Device Packages (마이크로 머신(MEMS) 소자 패키지의 열응력에 대한 연구)

  • Jeon, U-Seok;Baek, Gyeong-Uk
    • Korean Journal of Materials Research
    • /
    • v.8 no.8
    • /
    • pp.744-750
    • /
    • 1998
  • Unlike common device, MEMS(micro-electro-mechanical system) device consists of very small mechanical structures which determine the performance of the device. Because of its small mechanical structure inside. MEMS device is very sensitive to thermal stress caused by CTE(coefficient of thermal expansion) mismatch between its components. Therefore, its characteristics are affected by material properties. process temperature. and dimensions of each layer such as chip, adhesive and substrate. In this study. we investigated the change of the thermal stress in the chip attached to a substrate. With computer-aided finite element method (FEM), the computer simulation of the thermal stress was conducted on variables such as bonding material, process temperature, bonding layer thickness and die size. The commercial simulation program, ABAQUS ver5.6, was used. Subsequently 3-layer test samples were fabricated, and their degree of bending were measured by 3-D coordinate measuring machine. The experimental results were in good agreement with the simulation results. This study shows that the bonding layer could be the source of stress or act as the buffer layer for stress according to its elastic modulus and CTE. Solder adhesive layer was the source of stress due to its high elastic modulus, therefore high compressive stress was developed in the chip. And the maximum tensile stress was developed in the adhesive layer. On the other hand, polymer adhesive layer with low elastic modulus acted as buffer layer, and resulted in lower compressive stress. The maximum tensile stress was developed in the substrate.

  • PDF