• 제목/요약/키워드: cooperative robot

검색결과 169건 처리시간 0.025초

이종 로봇팀의 협업을 통한 맵 빌딩과 위치추정 (Cooperation of Heterogeneous Robot Team for Localization and Map Building)

  • 정진수;임윤원;강수혁;김동한
    • 제어로봇시스템학회논문지
    • /
    • 제17권2호
    • /
    • pp.102-107
    • /
    • 2011
  • In this paper we present cooperation of heterogeneous robot team, composed of a wheeled robot and a helicopter for localization and map building. This heterogeneous robot team can successfully fulfill task by combining the abilities of both robots than single robot because wheeled robot and helicopter have complementing ability. The scenario describes a tightly cooperative task, where the wheeled robot move carrying the helicopter and detect obstacles, if there are obstacles, helicopter take off for map building and land, then robot team move destination avoiding obstacles. We present PID controller for position control of helicopter and transformation algorithm to global coordinate from image pixel coordinate. Experimental result show that the proposed method is valid.

롤테이너 적재 소포를 자동으로 디팔레타이징하기 위한 로봇 시스템 개발 (Development of a Robot System for Automatic De-palletizing of Parcels loaded in Rolltainer)

  • 김동형;임을균;김중배
    • 로봇학회논문지
    • /
    • 제17권4호
    • /
    • pp.431-437
    • /
    • 2022
  • This paper deals with a study on the automatic depalletizing robot for parcels loaded in rolltainer of domestic postal distribution centers. Specifically, we proposed a robot system that detect parcels loaded in a rolltainer with a 3D camera and perform de-palletizing using a cooperative robot. In addition, we developed the task flow chart for parcel de-palletizing and the method of retreat motion generation in the case of collision with rolltainer. Then, we implemented the proposed methods to the robot's controller by developing robot program. The proposed robot system was installed at the Anyang Post Distribution Center and field tests were completed. Field tests have shown that the robotic system has a success rate of over 90% for depalletizing task. And it was confirmed that the average tact time per parcel was 7.3 seconds.

4륜조향 자율주행로봇의 최적속도에 관한 연구 (A Study on the Optimum Velocity of a Four Wheel Steering Autonomous Robot)

  • 김미옥;이정한;유완석
    • 한국자동차공학회논문집
    • /
    • 제17권4호
    • /
    • pp.86-92
    • /
    • 2009
  • A driver-vehicle model means the integrated dynamic model that is able to estimate the steering wheel angle from the driver's desired path based on the dynamic characteristics of the driver and vehicle. Autonomous driving robot for factory automation has individual four-wheels which are driven by electronic motors. In this paper, the dynamic characteristics of several four-wheel steering systems with the simultaneously steerable front and rear wheels are investigated and compared by means of the driver-vehicle model. A diver-vehicle model is proposed by using the PID control to velocity and trajectory of control autonomous driving robot. To determine the optimum speed of a autonomous driving robot, steady-state circle simulation is carried out with the ADAMS program and MATLAB control model.

군집 로봇의 동시적 위치 추정 및 지도 작성 (Simultaneous Localization and Mapping For Swarm Robot)

  • 문현수;신상근;주영훈
    • 한국지능시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.296-301
    • /
    • 2011
  • 본 논문에서는 군집 로봇의 동시적 위치 추정 및 지도 작성 시스템을 제안하였다. 로봇은 실험환경에서 주변 환경을 인식하기 위해 초음파센서와 비젼 센서를 이용하였다. 실험환경을 3개의 영역으로 분할하였고, 로봇은 각 영역에서 초음파 센서로 주변 환경에 대한 거리 정보를 측정하였고, SURF 알고리즘을 이용하여 비젼 센서로부터 입력받은 영상과 landmark의 특징점을 정합하여 랜드마크를 인식하였다. 제안된 방법은 센서값들에 대한 오차에 민감하지 않고 실험환경에 비교적 정확한 지도를 작성함으로써 응용 가능성을 증명하였다.

UBA-Sot : An Approach to Control and Team Strategy in Robot Soccer

  • Santos, Juan-Miguel;Scolnik, Hugo-Daniel;Ignacio Laplagne;Sergio Daicz;Flavio Scarpettini;Hector Fassi;Claudia Castelo
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권1호
    • /
    • pp.149-155
    • /
    • 2003
  • In this study, we introduce the main ideas on the control and strategy used by the robot soccer team of the Universidad de Buenos hires, UBA-Sot. The basis of our approach is to obtain a cooperative behavior, which emerges from homogeneous sets of individual behaviors. Except for the goalkeeper, the behavior set of each robot contains a small number of individual behaviors. Basically, the individual behaviors have the same core: to move from the initial to-ward the target coordinates. However, these individual behaviors differ because each one has a different precondition associated with it. Each precondition is the combination of a number of elementary ones. The aim of our approach is to answer the following questions: How can the robot compute the preconditions in time\ulcorner How are the control actions defined, which allow the robot to move from the initial toward the final coordinates\ulcorner The way we cope with these issues is, on the one hand, to use ball and robot predictors and, on the other hand, to use very fast planning. Our proposal is to use planning in such a way that the behavior obtained is closer to a reactive than a deliberative one. Simulations and experiments on real robots, based on this approach, have so far given encouraging results.

다중홉 통신 기법을 활용한 네트워크 로봇의 협력적 경로 탐색 (Wireless Multihop Communications for Frontier cell based Multi-Robot Path Finding with Relay Robot Random Stopping)

  • 정진홍;김성륜
    • 한국통신학회논문지
    • /
    • 제33권11B호
    • /
    • pp.1030-1037
    • /
    • 2008
  • 본 논문에서는 다중 로봇 (multi-robot)을 활용한 응용분야 중, 미지의 영역에 대한 탐색 (exploration) 능력을 향상시켜서, 주어진 미로 (maze)에서 다중 로봇이 통신을 통해서 협력적으로 출구를 찾아가는 효율적인 방안을 제안하였다. 즉, 미로 형태의 임의의 환경을 생성한 후, 로봇을 무작위로 배치시켜 상호간에 통신을 통하여 출구로 신속히 모두 빠져나오는 문제를 다루고 있다. 미로탐색을 위해 다중 로봇의 지역 탐색에서 사용되었던, 프론티어 셀, 셀 유틸리티등 기존 연구를 활용하였다. 또한 로봇간의 다중홉 무선 통신 (multihop wireless communications)을 위해서 이동성 (mobility)에 강한 일종의 홉기반 (hop-by-hop) 라우팅인, 랜덤 베스킷 볼 라우팅을 채용하였다. 또한, 출구를 찾은 로봇이 일정한 확률에 의거하여 출구 앞에서 정지하거나 혹은, 빠져나가는 의사 결정을 하여, 이 확률적인 결정이 다른 로봇의 행동에 어떻게 영향을 주는지를 실험적으로 조사하였다. 즉, 출구를 찾은 로봇이 현재 위치에서 멈추어서, 통신 중계 지점 (relay)으로 어떻게 활동되어야 최적인지에 대한 문제를 모의 실험을 통해 파악해보았다.

COORDINATION CHART COLLISION-FREE MOTION OF TWO ROBOT ARMSA

  • Shin, You-Shik;Bien, Zeung-Nam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집(한일합동학술편); 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.915-920
    • /
    • 1987
  • When a task requires two robot arms to move in a cooperative manner sharing a common workspace, potential collision exists between the two robot arm . In this paper, a novel approach for collision-free trajectory planning along paths of two SCARA-type robot arms is presented. Specifically, in order to describe potential collision between the links of two moving robot arms along the designated paths, an explicit form of "Virtual Obstacle" is adopted, according to which links of one robot arm are made to grow while the other robot arm is forced to shrink as a point on the path. Then, a notion of "Coordination Chart" is introduced to visualize the collision-free relationship of two trajectories.of two trajectories.

  • PDF

이동로봇의 Herding 문제 적용 (Application of Herding Problem to a Mobile Robot)

  • 강민구;이진수
    • 제어로봇시스템학회논문지
    • /
    • 제11권4호
    • /
    • pp.322-329
    • /
    • 2005
  • This paper considers the application of mobile robot to the herding problem. The herding problem involves a ‘pursuer’ trying to herd a moving ‘evader’ to a predefined location. In this paper, two mobile robots act as pursuer and evader in the fenced area, where the pursuer robot uses a fuzzy cooperative decision strategy (FCDS) in the herding algorithm. To herd evader robot to a predefined position, the pursuer robot calculates strategic herding point and then navigates to that point using FCDS. FCDS consists of a two-level hierarchy: low level motion descriptors and a high level coordinator. In order to optimize the FCDS, we use the multi­thread evolutionary programming algorithm. The proposed algorithm is implemented in the real mobile robot system and its performance is demonstrated using experimental results.

행렬 Decomposition 방법에 기초한 다중협동 로봇의 동적 조작도 해석 (Analysis of dynamic manipulability for multiple cooperating robot system based on matrix decomposition)

  • 이지홍;조복기
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 V
    • /
    • pp.2705-2708
    • /
    • 2003
  • In this paper, we propose a method that applies matrix decomposition technique to the connection of actuator capabilities of each robot to object acceleration limits for multiple cooperative robot systems. The robot systems under consideration are composed of several robot manipulators and each robot contacts a single object to carry the object while satisfying the constraints described in kinematics as well as dynamics. By manipulating kinematic and dynamic equations of both robots and objects, we at first derive a matrix relating joint torques with object acceleration, manipulate the null space of the matrix, and then we decompose the matrix into three parts representing indeterminancy, connectivity, and redundancy. With the decomposed matrix we derive the boundaries of object accelerations from given joint actuators. To show the validity of the proposed method some examples are given in which the results can be expected by intuitive observation.

  • PDF

Seamless Routing and Cooperative Localization of Multiple Mobile Robots for Search and Rescue Application

  • Lee, Chang-Eun;Im, Hyun-Ja;Lim, Jeong-Min;Cho, Young-Jo;Sung, Tae-Kyung
    • ETRI Journal
    • /
    • 제37권2호
    • /
    • pp.262-272
    • /
    • 2015
  • In particular, for a practical mobile robot team to perform such a task as that of carrying out a search and rescue mission in a disaster area, the network connectivity and localization have to be guaranteed even in an environment where the network infrastructure is destroyed or a Global Positioning System is unavailable. This paper proposes the new collective intelligence network management architecture of multiple mobile robots supporting seamless network connectivity and cooperative localization. The proposed architecture includes a resource manager that makes the robots move around and not disconnect from the network link by considering the strength of the network signal and link quality. The location manager in the architecture supports localizing robots seamlessly by finding the relative locations of the robots as they move from a global outdoor environment to a local indoor position. The proposed schemes assuring network connectivity and localization were validated through numerical simulations and applied to a search and rescue robot team.