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Abstract

When a task requires two robot arms to move in
a cooperative manner sharing a common workspace,
potential collizion exists between the two robot
arms. In this paper, a novel approach for
collision-free trajectory planning along paths of
two  SCARA-type robot arms is  presented.
Specifically, in order to describe potential
collision between the links of two wmoving robot
arms along the designated paths, an explict form
of *“Virtual Obstacle" is adopted, according to
vwhich links of one robot arm are made to grow
while the other robot arm is forced to shrink as
a point on the path. Then, a notion of
“Coordination Chart" is introduced to visualize

the collision-free relationship of two
trajectorlies.
1. Introduction

When a task requires two robot arms to move in

a8 cooperative manner sharing a common workspace,
potential collision exists between the two robot
arms. Thus, some kinds of motion coordination
between the two robot arms should be incorporated
for an efficient multi~robot system.

Different from the case of stationary obstacle
with a single robot arm(1,2,3), regarding
collision-free motion planning for multi-robot
system, relatively little work has been reported
so far. Freund et al.(4) formulated problem of
collision avoidance in multi-robot system as a
findpath problem and suggested an algorithm with
some simulation results. Kant et al.(B) solved
the trajectory planning problem in time varying
environments for a point robot. In their method,
problem of planning collision-free trajectory is
decomposed into two subproblems of path finding
with stationary obstacles and velocity planning
along the path to avoid collision with moving
obstacles. In order tc plan collision-free
velocity profile along the chosen path, they
first transformed potential collision into
path-time space using the path information of a
point robot and trajectory of moving obstacles,
and algorithms are then presented to solve the
velocity planning problem with different
optimality oriteria. Lee et al.(6) proposed an
approach to collision-free motion planning for
two moving robots using a sphere model for the
wrist of the robot, straight line trajectory
planning., and notions of a collision map and time
scheduling. In time scheduling of a trajectory,
uging speed reduction and/or time delay of the
robot motion, an algorithm is presented to
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achieve collision-free trajectory.

In this paper, a novel approach  for
collision-free trajectory planning along paths of
two SCARA-type robot arms is presented. For this,
in Section 2, a basic theory of obtaining virtual
obstacle of given arbitrary shaped stationary
obstacle is discussed first. Then explicit form
of virtual obstacle is presented in Section 3. To
visualize all the collision~free relation of two

trajectories, in Section 4, a notion of
coordination chart is introduced, and the
conclusions are drawn in Section 5.
2. Basic theory with stationary obatacle
Consider a robot arm with two links driven by
two revolute joints in series. As usual, the
links of the robot arm are modelled as solid
lines as shown in Fig. 1. 11 and 12 denote the
lengths of the first and the second link.
respectively, and 11>12 is assumed. By
convention, 81 and 82. angles of rotation f{for

joint 1 and joint 2, respectively, are positive
if measured in the clockwise direction.
Let Dl and D2 be the sets of allowable joint

angles of joint 1 and joint 2 of robot arm,
respectively, and it is assumed that

Diz{ell—n<91§n} (1)

(2)

D,={8,, |—ngezgo} .

Since the robot arm has only two degrees of
freedom, the position and orientation can be
specified by either a single two-dimensional
vector, called its configuraticon, 8=(81.82)T. or
position vector X=(x.g)T. where T denotes the
transpose operation and x and y are coordinates
of end-effector along the x- and y-axis with
respect to the origin o.

lLet the robot arm be denoted as R. We use the
notation RX to be the smet of all points (x,y) in

the Cartesian x-y space =zuch that each (x,y)
belongs to the first line link or the second link
of the robot arm in a particular configuration

B=(81.82)T corresponding to a position vector X.
Now, given an obstacle Aj described as a set in
the Cartesian space, we will denote V(Ai) to mean

the set in the Cartesian space of all position
vectors of R which collides with the obstacle Ai’
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Fig. 1 Robot arm R Fig. 2 Point obstacle p
i.e., 3. Virtual obstacle for a point obstacle
V(Ai)={XIRX n Al = 0} (3)

V(Ai) is simply called the “virtual' obstacle for
the corresponding obstacle Ai' Then we can obtain
the following result.

Theorem 1:
For robot arm R in a particular position X,
Rani=0<=>XnV(Ai)=0.

Implication of Theorem 1 is that when the robot
arm is in a particular position X, the necessary

and sufficient condition for the robotarme
being free from collision with obstacle Ai is

that point X iz free from collision with virtual
obstacle V(Ai)'

Theorem 2:
let A be the wunion of finite number n of

n
obstacles A.'s, i.e., A= U A,. Then,
i =1 b

v(a)= U V(a,).
i=1

Theorem 3:
Let Bi be the boundary of obstacle Ai'

Then, V(B,)=V(A ).

Based on the above Theorem 2 and Theorem 3, a
simple procedure of obtaining the virtual
obstacles V(A) can be sumarized as follows:

Step 1): Set index: i=1.
Step 2): For A, find V(Bi)'

Step 3): Update the index: i=i+1.
Step 4): If i<n then go to Step 2.
otherwise proceed to Step 5.

n
Step 5): Now, V(A)= U V(B,).
i=1

As can be noticed. Step 2 of finding V(Bl)

needs further refinements. To this end, a method
of finding the virtual obstacle for a point
cbstacle is detailed in the next section.
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A point obstacle p in the Cartesian space can
be described completely in the polar coordinate
system as (rp,Bp), where r_ is the distance of

the point p from the origin and Bp iz the angle
betuween the y-axis and the straight line segment
op as shown in Fig. 2. By convention, B8_ is

positive if measured in the clockwise direction.

For the point obstacle p. various forms of
virtual obstacle V(p) can be generated depending
on its location. It is found that there are five
distinct cases according to the location of point
obstacle p.

Case 1: r_=0
p

When the obstacle p is at the origin of the
Cartesian space, whole workspace of R becomes
virtual obstacle from the definition of (3).

Case 2: <r'p<11—12

The first link of R is in collision with p only
when 81=8p. regardless of 82 as shown in

Fig. 3.a. Thu=, the virtual obstacle in this case
iz half circle, i.e.,

V(p)=(k=(x.y) | (x-1;sin 8,)%+(y-1cos B,)?

=l§ and x-y tan Bp < 0}. (4)
Fig. 3.b shows the virtual obstacle for a point
ob=tacle p for the case of rp=5.29 cm and Bp=45°
with 11=37 cm, and 12=23 cm.

Case 3: ll—lzgrpgll

In this case, there are possibilities that
the first and/or the second link may collide
p. When the first 1link collides with p,
virtual obstacle can be described by the
equation as in (4).

V() ={X=(x. g)T| (x-1;sin Bp) 2+(g—11c,os Bp) 2

=1§ and x-y tan Bp < @}.

both
with

the
same

()
When only the second link collides with p as
illustrated in Fig 4.a, the virtual obstacle is
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Fig. 3.b V(p) when p=(5.29cm,45 )

i—w.ﬂ_—._

han

Fig. 4.a ll—lzgrpgll case

917

e

I Soale: 18 ow/div.

o
Fig. 4.b V¥(p) when p=(28cm,45 )

given by

U(P)y= (k=) 1 [ (o ) 2oy ) +

. 32 )2 = .
J(xp x1) +(gp gl) = 12 and x-y tan Bp < 8}

(&)
where X1=1151n 81, g1=11cos 81 with apgelgapwr
aree1?oa2
and 8 =cos =, B8 is the angle
r 2:"}311 r

between op and the first link when the end point
of the second link of R is in collision with p.
It should be noted that 81__ is positive.

Summarizing, the virtuval obstacle in this case

is

V(p)= V(p); U V(p)y- @)
In Fig. 4.b, is shown the virtual obstacle for a
point obstacle of rp=28 cm  and 8p=45°with the
link parameters being the same as in Case 2.

Case 4: 1 1+12

In this case, only the second link can
potentially collide with p as shown in Fig. 5.a.
The virtual obstacle, in this case, is the same
as in (6) as depicted in Fig. 5.b for a point

<
obstacle of r'p=45 cm  and Bp=45 with the link
parameters as in Case 2.

1 <rp§ 1

Case 5: 11+12<rp
In thi= case, a point obstacle can not limit
the movement of robot arm K. Thus virtual
obstacle is empty, i.e.,
V(p)=0. ()

Now, since the boundary of a given obstacle
Ai(not necessarily a point obstacle) can be

thought as the union of infinite number of point
obatacles of  boundary points, the virtual
obstacle V(Ai) for Ai can be obtained by

examining all the boundary points of Ai according

to the above five cases.

Fig. 6.a shows an example. In this case. the
obstacle is a straight line which is parallel to
x-axis and located at y=29 cm. The corresponding
virtual obstacle in Fig. 6.b is illustrated for
the case of 11=37 cm and 12=23 om.
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Fig. 6.a Straight line obstacle
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Fig. 6.b Virtual obstacle of straight line

4. Coordination chart for collision avoidance

Consider two SCARA-type robot arms working in a
cooperative manner sharing a common workspace as
shown in Fig. 7. In Fig. 7, robot 1 and robot 2
are to move from their respective initial points
denoted as i's to the final points f's along the
designated paths, which are not necessarily
straight lines. It is obvious that collision
between the links of the robot 1 and the robot 2
can occur depending on relative movement of both
robot arms. For example, consider the following

trivial cases. If the robot 2 starts when the
robot 1 completes its movement, for the robot 2
there is no way of going to the final point f

along the designated path without collision. On
the other hand, if the robot 2 completes first,
and then the robot 1 starts, there is no
collision at all regardless of trajectory of the
robot 1. Considering case that the two robot arms
move simultaneously, situation becomes rather
complex. It is remarkable that in this case, each
robot arm acts as moving and shape-varying
obstacle with respect to the other robot arm.
Therefore, in this =section, a notion of
“coordination chart" is introduced to tell(, or
vigualize) all the collision-free relationship of
two trajectories for the two moving robot arms.

{1) Coordination chart

Let =N and Sp be normalized traveled distances

along the designated paths of the robot 1 and the
robot 2, respectively, then 5.8, € [©,1]. Now

consider two-dimensional s, x space, the

1 %2
Cartesian product space of sy and sy The basic
idea is that from the path information of the two
robot arms, using the concept of the virtual
obstacle of Section 2 and Section 3, we can
represent all the potential collision between the
two moving robot arms on the s, X s, space. The

s X 8, space with potential collision region on

it is simply called coordination chart.

To apply the concept of wvirtual obstacle,
regarding the robot 2 in Fig. 7 as the robot R
considered in Section 2 and Section 3, let wus
shrink the robot Z as a point on the end-effector
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Fig. 9 Coordination chart

of the robot 2 vhich is also a point on the given
path of the robot 2 while cobtaining the virtual
obstacle of the portion of the rchot 1 in the
comman workspace. Case when the robot 1 is at its
final point, i.e., sl=1, is depicted in Fig. 8.a.

Applying (4)-(8) to every point on the links of
the robot 1 which is also in the common
workspace, the wvirtual obstacle can be obtained

figure, collision
and end points on the path of the robot 2

as shown in Fig. 8.b. In this
start

is denoted as s; and S;. respectively and this

collision segment of 8y € [sg. Sg] when Sl=1 can
be mapped into Sy X S, Space as shown in Fig. 9.

Now, repeating the same procedure described above
along every point on the path of the robot 1,
i.e., varying sy from @ to 1, we can obtain the

final coordination chart as in Fig. 9.
(2) Collision—free relation of two trajectories

notion of coordination chart,

Using the we
actually converted two robot arms as a point on
the sy X s,  space. Depending on the path
requirement of the two robot arms, we can
actually obtain various types of coordination

chart. If, however, points (0,0) and (1,1) on the
coordination chart are not connected as in
Fig. 10.a, then there is no way of accomplishing
their tasks for the both robot arms along the
designated paths. Fig 18.b shows the case that
the robot 2 begins starting when the robot 1
completes its wmovement and Fig 1@.c shows the
converse situvation. Denoting collision-free
relation of the robot 1 with respect to the robot
2 and the vice versa as f and g respectively,
i.e., sl=f(sz) and 52=g(sl). it can be remarked

that both the collision—free relation f and g
must be monotone increasing each other, otherwise
either one of the two robot arms wmoves backward
along the given path as in Fig 10.d and Fig 10.e.
In Fig 10.d and Fig 1@.e. the robot 1 and the
robot 2 moves backward temporarily and this
situation is not desirable in the practical
Iense .,
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5. Conclusions

A novel idea of coordination chart was
presented for collision-free trajectory planning
problem of two robot arms along the given paths,
which are not necessarily straight lines. In
order to effectively describe potential collision
between the links of two robot arms, an explicit
form of wvirtual obstacle was adopted for the
SCARA-type robot arm. Via the coordination chart,
all the ocollision-free trajectory relationship
between two moving robot arms could be
visualized. Finally, it can be remarked that idea
of virtual obstacle can be equally applicable to
other types of contemporary robot arm such as a
combination of prismatic and revolute-type one or
only prismatic-type rcbot arm.
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