• Title/Summary/Keyword: cooling time

Search Result 1,642, Processing Time 0.032 seconds

Gamma-Ray Spectrometric Determination of Burnup Distribution and Cooling Time of Spent PWR Fuel Assemblies (감마선 분광분석에 의한 조사후 핵연료 집합체(PWR)의 연소분포 및 냉각시간 결정)

  • Young-Gil Lee;Jae-Shik Jun
    • Nuclear Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 1985
  • Non-destructive gamma-ray spectrometry was carried out on the spent PWR fuel assemblies at the spent fuel pool of reactor-site. Attention was focused on the determination of burnup distribution and cooling time. For the measurement of burnup distribution, the concentration ratio of $^{134}$ Cs$^{137}$ Cs was used and the results showed these ratios varied with the positions of assemblies in the core during their irradiation. For the measurement of cooling time, $^{144}$ Ce$^{137}$ Cs was used and the results were agreed considerably well with the operator declared cooling time.

  • PDF

Dynamic Simulation of a Hybrid Cooling System utilizing Heat Pump, Desiccant and Evaporative Cooler (열펌프, 데시칸트 및 증발식 냉각기를 조합한 하이브리드 냉방 시스템의 동특성 해석 연구)

  • Seo, Jung-Nam;Kim, Young-Il;Chung, Kwang-Seop
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Hybrid desiccant cooling system(HDCS) consists of desiccant rotor, regenerative evaporative cooler, heat pump and district heating hot water coil. In this study, TRNSYS and EES, dynamic and steady simulation programs were used for studying hybrid desiccant cooling system which is applied to an apartment house from June to August. The results show that power consumption of the hybrid desiccant cooling system is 70 kWh in June, 199 kWh in July and 241 kWh in August. Sensible and latent heats removed by the hybrid desiccant cooling system are 300 kWh, 301 kWh in June, 610 kWh, 858 kWh in July and 719 kWh, 1010 kWh in August. COP of the hybrid desiccant cooling system is 8.6 in June, 7.4 in July and 7.2 in August. COP of the hybrid desiccant cooling system decreases when latent heat load increases. Operation time of the system is 70 hours in June, 190 hours in July and 229 hours in August. Since the cooling load is largest in August, the operation time of August is longest for maintaining the indoor temperature at $26^{\circ}C$. Due to the characteristics of hybrid desiccant cooling system for efficiently handling both sensible and latent loads, this system can handle sensible and latent heat loads efficiently in summer.

Multi-dimensional wind vibration coefficients under suction for ultra-large cooling towers considering ventilation rates of louvers

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.273-283
    • /
    • 2018
  • Currently, the dynamic amplification effect of suction is described using the wind vibration coefficient (WVC) of external loads. In other words, it is proposed that the fluctuating characteristics of suction are equivalent to external loads. This is, however, not generally valid. Meanwhile, the effects of the ventilation rate of louver on suction and its WV are considered. To systematically analyze the effects of the ventilation rate of louver on the multi-dimensional WVC of ultra-large cooling towers under suctions, the 210 m ultra-large cooling tower under construction was studied. First, simultaneous rigid pressure measurement wind tunnel tests were executed to obtain the time history of fluctuating wind loads on the external surface and the internal surface of the cooling tower at different ventilation rates (0%, 15%, 30%, and 100%). Based on that, the average values and distributions of fluctuating wind pressures on external and internal surfaces were obtained and compared with each other; a tower/pillar/circular foundation integrated simulation model was developed using the finite element method and complete transient time domain dynamics of external loads and four different suctions of this cooling tower were calculated. Moreover, 1D, 2D, and 3D distributions of WVCs under external loads and suctions at different ventilation rates were obtained and compared with each other. The WVCs of the cooling tower corresponding to four typical response targets (i.e., radial displacement, meridional force, Von Mises stress, and circumferential bending moment) were discussed. Value determination and 2D evaluation of the WVCs of external loads and suctions of this large cooling tower at different ventilation rates were proposed. This study provides references to precise prediction and value determination of WVC of ultra-large cooling towers.

Contact Heat Transfer Coefficient for Finite Element Analysis in Warm Forging Processes (온간단조 공정의 계면열전달계수)

  • Kang J.H.;Ko B.H.;Jae J.S.;Kang S.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.3 s.84
    • /
    • pp.183-188
    • /
    • 2006
  • Heat transfer coefficients have great influence on finite element analysis results in elevated temperature forging processes. Experimentally calculated contact heat transfer coefficient is not suitable for one-time finite element analysis because analyzed temperature will be appeared to be too low. To get contact heat transfer coefficient for one-time finite element analysis, tool temperature in operation was measured with thermocouple and repeated finite element analysis was performed with experimentally calculated contact and cooling heat transfer coefficient. Surface temperature of active tool was obtained comparing measurement and analysis results. Contact heat transfer coefficient for one-time finite element analysis was achieved analyzing surface temperature between repeated finite element analysis and one-time finite element analysis results.

Evaporation Cooling of Droplet due to Surface Roughness under Radiative Heat Input Condition (복사가열조건에서 표면 거칠기에 따른 액적의 증발 냉각)

  • Bang Chang-Hoon;Kwon Jin-Sun;Yea Yong-Taeg
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.14-19
    • /
    • 2004
  • The objective of the present work is to examine evaporation cooling of droplet due to surface roughness under radiative heat input condition. The surface temperatures varied from $80\~160^{\circ}C$ on aluminum alloy (AL 2024) and surface roughness was $0.18{\mu}m,\;1.36{\mu}m$. The results are as follows; Regardless of surface roughness under radiative heat input condition, as droplet diameter is larger, the in-depth temperature of solid decreases and evaporation time increases. In the case of $0.18{\mu}m\;and\;1.36{\mu}m$ of surface roughness, the larger the surface roughness is, the less the evaporation time is and the larger the temperature within the solid is. In the case of $Ra=0.18{\mu}m$ evaporation time and time averaged heat flux for radiative heat input case is shorter than for the conductive case.

Evaporation Cooling Phenomena of Droplets Containing Fire Suppression Agents (화제 억제제가 첨가된 수용액 액적의 증발냉각 현상)

  • 유갑종;방창훈;김현우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.895-903
    • /
    • 2001
  • Evaporation cooling phenomena of droplets containing fire suppression agents on a hot metal surface were experimentally investigated. Solution of water containing potassium acetate (30-50% by weight) and sodium bromide (10-30% by weight) were used in the experiments, and surface temperatures were ranged from 70-116$^{\circ}C$. The evaporation time of the droplet on the heated surface was determined by using frame-by-frame analysis of the video records. It is found that the apparent evaporation time is shorter in turns of pure water, sodium bromide solution and potassium acetate solution. However, the time averaged heat flux is higher in turns of pure water, sodium bromide solution and potassium acetate solution. In-depth temperature variation of the hot metal does not occur significantly by the kinds of additive.

  • PDF

Heat Exchange Charaterictics of Water under the Low Pressure by driving Ejector (에젝터 구동 저압 증발하에서 물의 열교환 특성)

  • Shin, Yu-Sik;Lee, Youn-Hwan;Lee, Sang-Chul;Kim, Se-Hyun;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1885-1890
    • /
    • 2003
  • The cooling tower is a device for making a cooling water in the air conditioning system of building, and there are many kinds of cooling tower system for air conditioner. In this paper, we introduced the water cooling system with an enclosed tank and water ejecting system for evaporating the water in tank. The city water was used for a working fluid, and the cooling water is generated by evaporating latent heat in the tank with a $25{\sim}50mmHg$. The time to reaching this vacuum pressure was about $20{\sim}30minutes$, and cooling water was obtained the value of temperature difference ${\Delta}T=7^{\circ}C$.

  • PDF

A Simulation-based Optimization of Design Parameters for Cooling System of Injection Mold by using ANOVA with Orthogonal Array (직교배열과 분산분석법을 이용한 사출금형 냉각시스템 파라미터의 시뮬레이션 최적설계)

  • Park, Jong-Cheon;Shin, Seung-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.121-128
    • /
    • 2012
  • The optimization of cooling system parameters for designing injection mold is very important to acquire the highest part quality. In this paper, the integration of computer simulations of injection molding and Analysis of Variance(ANOVA) with orthogonal array was used as a design tool to optimize the cooling system parameters aimed at minimizing the part warpage. The design optimizer was applied to find the optimum levels of cooling system parameters for a dustpan. This optimization resulted in more uniform temperature distribution over the part and significant reduction of a part warpage, showing the capability of present method as an effective design tool. The whole optimization process was performed systematically in a proper number of cooling simulations. The design optimizer can be utilized effectively in the industry practice for designing mold cooling system with less cost and time.

Numerical Analysis for Improvement of Cooling Performance in Nanoimprint Lithography Process (나노임프린트 공정에서의 냉각성능 개선에 대한 수치해석)

  • Lee, Ki-Yeon;Jun, Sang-Bum;Kim, Kug-Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.89-94
    • /
    • 2011
  • In recent years there have been considerable attentions on nanoimprint lithography (NIL) by the display device and semiconductor industry due to its potential abilities that enable cost-effective and high-throughput nanofabrication. A major disadvantage of thermal NIL is the thermal cycle, that is, heating over glass transition temperature and then cooling below it, which requires a significant amount of processing time and limits the throughput. One of the methods to overcome this disadvantage is to improve the cooling performance in NIL process. In this paper, a numerical analysis model of cooling system in thermal NIL was development by CAD/CAE program and the performance of the cooling system was analyzed by the model. The calculated temperatures of nanoimprint device were verified by the measurements. By using the analysis model, the case that the cooling material is replaced by liquid nitrogen is investigated.

Inner Evaporative Cooling Wind Power Generator with Non-overlapping Concentrated Windings

  • Li, Wang;Wang, Haifeng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 2014
  • As the space of the wind power generator stator end is limited, it is difficult for us to place the inner evaporative cooling system in it. We use the non-overlapping concentrated windings scheme to solve the placing and cooling problem. The characteristic of a 5MW direct-driven permanent magnet generator with non-overlapping concentrated windings were analyzed under no-load, rating-load and short-circuit by (Finite Element Method) FEM for verification of design. We studied the connection methods of the stator windings and designed the end connection member. The heat dissipation of the stator end was simulated by FEM, the result showed that the end cooling could satisfy the wind generator operation needs. These results show that the direct-driven permanent magnet wind power generators with non-overlapping concentrated windings and inner evaporative cooling system can solve the cooling problem of wind power generator, and obtain good performance at the same time.