• 제목/요약/키워드: cooling channels

검색결과 173건 처리시간 0.024초

사출금형의 냉각채널 성능 평가 (PERFORMANCE EVALUATION OF COOLING CHANNELS IN A PLASTIC INJECTION MOLD MODEL)

  • 김현수;한병윤;이일천;김영만;박형구
    • 한국전산유체공학회지
    • /
    • 제17권2호
    • /
    • pp.53-57
    • /
    • 2012
  • Design of the cooling channels of a plastic injection mold affects the quality and the productivity of the injection processes. In the injection process, the melted resin with high temperature enters the mold cavity, and just after the cavity is filled the heat should be dissipated through the cooling channels simultaneously. The purpose of this study is to analyse the heat transfer phenomenon and to estimate the temperature distribution in the mold to evaluate the cooling effect of the channels. The injection mold is assumed to have cooling channels of circular cross section and each channel has the same coolant flow rate. and The cavity has a rectangular shape. The results show that as the cooling channels get closer to the cavity surface, the cooling efficiency increases as might easily be guessed. However, due to the final hot resin flow from the gate an intensive cooling is required in that region.

균일 냉각을 고려한 Thick-Wall 형상의 플라스틱 렌즈 쾌속 금형 제작 (Manufacturing of Rapid Tooling for Thick-Wall Plastic Lens Mold with Conformal Cooling Channel)

  • 박형필;차백순;이상용;최재혁;이병옥
    • Design & Manufacturing
    • /
    • 제1권1호
    • /
    • pp.27-32
    • /
    • 2007
  • In the optical application demand for high quality lens is increasing. Plastics lenses are demanded more than glass lenses for large size lenses as well as micro-size lenses. It is difficult to apply typical straight cooling channels of injection mold to lens molding due to its non-uniform temperature distribution. In this study, we manufactured molds for plastic lenses with the conventional cooling channels and conformal cooling channels produced by the DMLS process. We evaluated cooling performance for the 2 molds by injection molding experiment. Also, uniformity of the temperature distribution was tested by infrared camera and temperature monitoring. We confirmed that the cooling performance and temperature uniformity with the conformal cooling channels is much improved from the ones with the conventional. The cooling time with the conformal cooling channels was reduced 30% compared with the conventional cooling channels.

  • PDF

부분적으로 후육부를 가지는 평판형 제품의 제작을 위한 사출성형 금형의 냉각채널 설계에 관한 연구 (A Study on the Design of Cooling Channels of Injection Mould to Manufacture a Flat Part with a Partly Thick Volume)

  • 안동규;박민우;김형수
    • 한국정밀공학회지
    • /
    • 제29권8호
    • /
    • pp.824-833
    • /
    • 2012
  • The shrinkage and the warpage of the moulded part are influenced by the design of the product and injection mould. In a flat part with a partly thick volume, the warpage of the flat part is created from the difference of the shrinkage between thin and thick regions. The warpage of the flat part with a partly thick volume can be reduced by a proper design of the cooling system in the injection mould. The goal of this paper is to design properly cooling channels of injection mould to manufacture a flat part with a partly thick volume. The conformal cooling channel is adopted to improve cooling characteristics of a region with the thick volume. The linear cooling channels are assigned to the other region. The proper design of the conformal cooling channels is obtained from three-dimensional injection molding analysis for various design alternatives. The moulding characteristics of the designed mould with both conformal and linear cooling channels are compared to those of the mould with linear cooling channels from viewpoints of temperature, shrinkage and warpage of the moulded part using numerical analysis. Injection mould with both conformal and linear cooling channels for the flat part with a partially thick volume is fabricated. In addition, injection moulding experiments are performed using the fabricated mould. From the results of the injection moulding experiments, it has been shown that the designed mould can successfully fabricate the flat part with a partially thick volume.

3 차원 사출성형 해석을 통한 냉장고 플라스틱 서랍 제작용 사출 성형 금형의 형상적응형 냉각수로 설계 (Design of Conformal Cooling Channels for the Mould of a Plastic Drawer of a Refrigerator by Analysis of Three-Dimensional Injection Moulding)

  • 안동규;박민우;박승화;김형수
    • 대한기계학회논문집A
    • /
    • 제34권10호
    • /
    • pp.1487-1492
    • /
    • 2010
  • 본 논문의 목적은 3 차원 사출성형해석을 통한 냉장고 플라스틱 서랍 제작용 사출성형 금형의 형상적응형 냉각수로 설계이다. 바람직한 형상적응형 냉각수로의 설계를 얻기 위하여 형상적응형 냉각수로의 직경과 위치가 사출성형 특성과 제품의 품질에 미치는 영향을 정량적으로 고찰하였다. 해석결과로부터 제품의 균일 냉각과 변형 최소화가 가능한 최적의 형상적응형 냉각수로의 설계를 도출할 수 있었다. 본 연구에서 제안된 사출성형 금형과 기존의 직선형 냉각수로의 사출성형 금형을 냉각/제품 제작 시간 및 제품 품질 측면에서 비교한 결과, 형상적응형 냉각수로를 가진 사출성형 금형이 제품의 생산성과 품질을 동시에 향상시킬 수 있음을 알 수 있었다.

사출 금형의 병렬 냉각 채널 설계 방법 (DESIGN OF PARALLEL COOLING CHANNELS IN A PLASTIC INJECTION MOLD)

  • 김현수;정휘권;한병윤;김영만;박형구
    • 한국전산유체공학회지
    • /
    • 제17권3호
    • /
    • pp.93-98
    • /
    • 2012
  • The injection molding process is suitable for manufacturing complicated plastic products. As the customer request higher quality products increase, realization of the precise dimensional and shape controls is getting more important. For this purpose it is important to obtain uniform cooling procedure over the whole surface of the high temperature molded plastic. Failure to this may lead to different shrinkage speed, internal stresses and unwanted shape deformations. It is necessary to distribute coolant flow rates to the main channel and to the sub-channels properly to insure uniform cooling process when there are parallel cooling channels. In this study, three-dimensional turbulent flow simulations for representative parallel cooling channels were performed. To insure the intended flow rate to each sub-channels, various shape designs for the channel system were investigated. The results show that as the Reynolds number increases the effect of shape design is more profound. Through the proper flow distribution, uniform cooling effects would be expected.

직접식 금속 쾌속조형 공정을 이용한 고 냉각 특성 사출 성형 금형 개발에 관한 연구 (Investigation into Development of Injection Mould with High Cooling Characteristics Using Direct Metal RP Technology)

  • 안동규;김현우;김형수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.187-190
    • /
    • 2007
  • The objective of this paper is to investigate into the development of injection mould with high cooling characteristics using a direct metal RP technology. In order to manufacture the injection mould with a high cooling rate, three-dimensional conformal cooling channels have been generated in the mould. DMT process, which is one of direct metal RP technologies, has been utilized to directly manufacture the metallic mould with three-dimensional conformal cooling channels. In order to examine the performance of the designed mould, injection molding tests have been carried out. The results of the experiments have been shown that a cooling time and the injection time of the proposed mould are reduced by the factor of five and two times in comparison with the injection mould with linear cooling channels.

  • PDF

전자기기 냉각용 마이크로채널 워터블록의 냉각성능에 관한 수치해석 (A Numerical Analysis on Cooling Performance of Microchannel Waterblock for Electronic Devices Cooling)

  • 최미진;권오경;차동안;윤재호;이찬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2426-2431
    • /
    • 2007
  • The microchannel waterblock has a good capability in the cooling of electronic devices. The object of this paper is to estiblish the scheme of design for the microchannel waterblock. The effects of flow rate and channel size on the cooling performances are investigated. It was found that the optimum flow rates were ragned from 0.7 lpm to 1.4 lpm. The thermal resistance at 2.0 lpm and 100 W was 0.13 $^{\circ}C$/W. Decrease in the width of channels is more effective for the improvement in the cooling performances of microchannel waterblock than increase in the height of channels. The increase of pressure drop resulted from decrease in the width of channels can be decreased by increasing the hight of channels.

  • PDF

냉각채널 열관리에 따른 고분자연료전지의 성능영향 연구 (Thermal managing effects by cooling channels on performance of a PEMFC)

  • 손영준;김민진;박구곤;김경연;이원용
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.373-373
    • /
    • 2009
  • Relative humidity, membrane conductivity and water activity are critical parameters of polymer electrolyte membrane fuel cells (PEMFC) for high performance and reliability. These parameters are closely related with temperature. Moreover, the ideal values of these parameters are not always identical along the channels. Therefore, the cooling channel design and its operating condition should be well optimized along the all location of the channels. In the present study, we have performed a numerical investigation on the effects of cooling channels on performance of a PEMFC. Three-dimensional Navier-Stokes equations are solved with the energy equation including heat generated by the electrochemical reactions in the fuel cell. The present numerical model includes the gas diffusion layers (GDL) and serpentine channels for both anode and cathode gas flows, as well as cooling channels. To accurately predict the water transport across the membrane, the distribution of water content in the membrane is calculated by solving a nonlinear differential equation with a nonlinear coefficient, i.e., the water diffusivity which is a function of water content as well as temperature. Main emphasis is placed on the heat transfer between the solid bipolar plate and coolant flow. The present results show that local current density is affected by cooling channels due to the change of the oxygen concentration and the membrane conductivity as well as the water content. It is also found that the relative humidity is influenced by the generated water and the gas temperature and thus it affects the distribution of fuel concentration and the conductivity of the membrane, ultimately fuel cell performance. Unit-cell experiments are also carried out to validate the numerical models. The performance curves between the models and experiments show reasonable results.

  • PDF

기능성 경사 복합재를 이용한 사출금형의 냉각회로 모델링 (Modeling of Cooling Channels of Injection Mould using Functionally Graded Material)

  • 신기훈
    • 대한기계학회논문집A
    • /
    • 제35권12호
    • /
    • pp.1647-1653
    • /
    • 2011
  • 일반적으로 사출금형의 사출주기는 플라스틱 제품의 냉각 시간에 크게 좌우되는 데, 냉각회로를 적용하여 조절할 수 있다. 금형의 냉각회로는 전통적으로 기계가공을 통하여, 직선형상만을 생성할 수 있었지만, 최근 적층조형 방법의 개발로 코어 형상을 따라가는 형상적응형 냉각회로를 생성할 수 있게 되었다. 한편 금형의 다이 재질로 열저항력이 크고, 치수변화가 적은 H13 스틸이 널리 사용되고 있지만, 열전도율이 낮기 때문에 냉각효율은 높지 않다. 이러한 점에서 열전달 효율을 극대화 시킬 수 있는 방법으로 H13 스틸과 구리(Cu)를 기능적으로 혼합한 기능성 경사 복합재(FGM)를 적층조형을 이용하여 냉각회로에 적용하는 방안이 검토되고 있다. 이러한 시도로서 본 논문에서는 H13 스틸과 Cu 간의 FGM을 이용한 형상적응형 냉각회로의 모델링 방법을 제안하고자 한다.

태양열 이용 소용량 제습냉방시스템 (Small-Capacity Solar Cooling System by Desiccant Cooling Technology)

  • 이대영;권치호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.154-156
    • /
    • 2008
  • A prototype of the desiccant cooling system with a regenerative evaporative cooler was built and tested for the performance evaluation. The regenerative evaporative cooler is to cool a stream of air using evaporative cooling effect without an inc6rease in the humidity ratio. It is comprised of multiple pairs of dry and wet channels and the evaporation water is supplied only to the wet channels. By redirecting a portion of the air flown out of the dry channel into the wet channel, the air can be cooled down to a temperature lower than its inlet wet-bulb temperature at the outlet end of the dry channels. Incorporating a regenerative evaporative cooler eliminates the need for deep dehumidification in the desiccant rotor that is necessary to achieve low air temperature in the system with a direct evaporative cooler. Subsequently, the regenerative evaporative cooler enables the use of low temperature heat source to regenerate the dehumidifier permitting the desiccant cooling system more beneficial compared with other thermal driven air conditioners. At the ARI condition with the regeneration temperature of $60^{\circ}C$, the prototype showed the cooling capacity of 4.4 kW and COP of 0.75.

  • PDF