• Title/Summary/Keyword: cooling capacity difference

Search Result 70, Processing Time 0.023 seconds

Fabrication of NTC thermistor embedded Miniature Thermoelectric Cooling Module for Temperature Control (NTC 써미스터가 내장된 항온 제어용 소형 열전 냉각 모듈 제조)

  • Park J. W.;Choi J. C.;Hwang C. W.;Choi S. C.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.83-89
    • /
    • 2004
  • NTC thermistor embedded miniature thermoelectric module was fabricated for the precise temperature control of optical communication device such as laser diode (LD). The miniature thermoelectric module ($7.2 mm{\times}9 mm{\times}2.2 mm$) consists of 21 BiTe thermoelectric couples, the operating temperature is precisely controlled by embedded thermistor with quick response. The figure-of-merit (Z), maximum temperature difference (${\Delta}T_{max}$), maximum cooling capacity ($Q_{max}$) of the miniature thermoelectric module were $2.5{\times}10^{-3}$/K, 72 K, 2.2 W respectively and temperature could be controlled in range of ${\pm}0.1^{\circ}C$ accuracy in air. The fabricated miniature thermoelectric module is suitable for applications of the optical communication packaging.

  • PDF

Heating and Cooling Performance Analysis of Ground Source Heat Pump System in Low Energy House (저에너지주택의 지열히트펌프시스템 냉·난방 성능분석)

  • Baek, Namchoon;Kim, Sungbum;Shin, Ucheul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.10
    • /
    • pp.387-393
    • /
    • 2016
  • A ground source heat pump system maintains a constant efficiency due to its stable heat source and radiant heat temperature which provide a more effective thermal performance than that of the air source heat pump system. As an eco-friendly renewable energy source, it can reduce electric power and carbon dioxide. In this study, we analyzed one year of data from a web based remote monitoring system to estimate the thermal performance of GSHP with the capacity of 3RT, which is installed in a low energy house located in Daejeon, Korea. This GSHP system is a hybrid system connected to a solar hot water system. Cold and hot water stored in a buffer tank is supplied to six ceiling cassette type fan coil units and a floor panel heating system installed in each room. The results are as follows. First, the GSHP system was operated for ten minutes intermittently in summer in order to decrease the heat load caused by super-insulation. Second, the energy consumption in winter where the system was operated throughout the entire day was 7.5 times higher than that in summer. Moreover, the annual COP of the heating and cooling system was 4.1 in summer and 4.2 in winter, showing little difference. Third, the outlet temperature of the ground heat exchanger in winter decreased from $13^{\circ}C$ in November to $9^{\circ}C$ in February, while that in summer increased from $14^{\circ}C$ to $17^{\circ}C$ showing that the temperature change in winter is greater than that in summer.

Suppression of performance degradation due to cold-head orientation in GM-type pulse tube refrigerator

  • Ko, Junseok;Kim, Hyobong;Park, Seong-Je;Hong, Yong-Ju;Koh, Deuk-Yong;Yeom, Hankil
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.50-53
    • /
    • 2012
  • This paper describes experimental study on GM-type pulse tube refrigerator (PTR). In a PTR, the pulse tube is only filled with working gas and there exists secondary flow due to a large temperature difference between cold-end and warm-end. The stability of secondary flow is affected by orientation of cold-head and thus, the cooling performance is deteriorated by gas mixing due to secondary flow. In this study, a single stage GM-type pulse tube refrigerator is fabricated and tested. The cooing performance of the fabricated PTR is measured as varying cold-head orientation angle and the results are used as reference data. Then, we divided interior space of pulse tube into three segments, and fixed the various size of screen mesh at interface of each segment to suppress the performance degradation due to secondary flow. For various configuration of pulse tube, no-load test and heat load test are carried out with the fixed experimental condition of charging pressure, operating frequency and orifice valve turns. From experimental results, the fine screen mesh shows the effective suppression of performance degradation for the large orientation angle, but the use of screen mesh cause the loss of cooling capacity rather than the case of no insertion into pulse tube. It should be compromised whether the use of screen mesh in consideration of the installation limitation of a GM-type pulse tube refrigerator.

An Analysis of the Performance of a Combined Expander-Compressor Unit for a CO2 Automotive Air Conditioning Cycle (차량용 CO2 에어컨 사이클 성능 향상을 위한 일체형 팽창기-압축기 성능 해석)

  • Choi, Jae Woong;Lim, Jeong Taek;Kim, Hyun Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.3
    • /
    • pp.107-115
    • /
    • 2018
  • A design combining the use of a compressor and expander was introduced in order to improve the cycle performance of a $CO_2$ automotive air conditioning system. Both the compressor and expander used were of rotary vane type and were designed to share a common shaft in a housing. Numerical simulation was carried out to evaluate the merit of the combined unit. In a typical automotive air conditioning operating conditions, the COP of the system was improved by 8.7% by the application of the combined unit. The compressor input was reduced by 5.2% through use of the expander output. In addition, about 3.06% increase in the cooling capacity was obtained through isentropic expansion in the expander. Our study noted that, as the pressure difference between the gas cooler and the evaporator becomes larger, the COP of the system improved increases unless the mass flow rate in the expander exceeds that in the compressor.

Development of Nanofluidic Thermosyphon Heat Sink (나노유체를 이용한 열사이폰 히트싱크)

  • Rhi Seok-Ho;Shin Dong-Ryun;Lim Taek-Kyu;Lee Chung-Gu;Park Gi-Ho;Lee Wook-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.826-834
    • /
    • 2006
  • A heat sink system using nanofluidic thermosyphon for electronics systems was studied. The experimental results indicate that a cooling capacity of up to 150 W at an overall temperature difference of $50^{\circ}C$ can be attainable. The heat sink design program also showed that a computer simulation can predict the most of the parameters involved. In the experimental study, the volume concentration of nano particles affect the system performance. Nanofluidic thermosyphon with 0.5% volume concentration showed the best performance. Nanofluid can increase CHF of the system compared with water as a working fluid. The current simulation results were close to the experimental results in acceptable range. The simulation study showed that the design program can be a good tool to predict the effects of various parameters involved in the optimum design of the heat sink.

Ozone Production Characteristics of the DBD Discharge the Electrode Shape at the Same Electrode surface area (동일한 전극 표면적에서 DBD방전형 내부전극 형상에 따른 오존생성특성 연구)

  • Kwon, Young-Hak;Park, Hyunmi;Song, HyunGig;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.71-77
    • /
    • 2016
  • The dielectric barrier discharge (DBD) has low efficiency due to about 70% input power is consumed as thermal energy in the discharge space. However, because of the usage of DBD ozone generator is easier than other methods. The DBD ozone generator has been widely applied for high concentration ozone generation in the industrial application. But, the low-capacity compact DBD ozone generator is not applied so far. Therefore, the DBD ozone generator is necessary to improve ozone production efficiency and reduce the capacity. In this paper, the stainless steel pipe inner electrode was designed with hall type and screw type to improve the ozone production yield. The manufactured two inner electrodes were experimented with normal type for comparison of the discharge characteristics and the ozone generating characteristics. As the experimental results, the discharge current effective value of designed inner electrodes with hall type and screw type are higher than the normal type, due to unequal electric field is formed at the boundary. However, the difference of designed and original electrodes is less than 0.1mA that has no effect on the discharge characteristic. On the other hand, the screw type inner electrode increased higher than original model about 7 times when the flow rate of the oxygen source gas was increased from $0.6{\ell}/min$ to $1.0{\ell}/min$ The reason was assumed by the flow rate of the raw gas through the inner electrode was became fast that has a cooling effect. The designed hall type and screw type inner electrodes have shown good performances in ozone generation and ozone production that better than normal type in the same electrode surface area.

Performance analysis of R404A refrigeration system using R744 as secondary refrigerant (R744를 2차냉매로 사용하는 R404A용 냉동시스템의 성능 분석)

  • Oh, H.K.;Son, C.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.24-29
    • /
    • 2012
  • In this paper, an analysis on performance and exergy of R404A refrigeration system using R744 secondary refrigerant was performed numerically to optimize the design for the operating parameters. The operating parameters considered in this study include subcooling and superheating degree, internal heat exchanger and compression efficiency, evaporation and condensation temperature in the R404A refrigeration cycle and temperature difference of cascade heat exchanger. The main results are summarized as follows : The COP(coefficient of performance) of R404A refrigeration system increases with increasing evaporation temperature. The evaporation capacity of R744 as secondary refrigerant increases with the increase in evaporation pressure of R744 secondary refrigeration. And the enthalpy in the evaporator outlet of R744 increases with the increasing evaporation pressure of R744 secondary refrigeration. Therefore, it is important to analysis for the relationship between COP of R404A refrigeration system and refrigeration capacity of R744. As cascade evaporation temperature increase, the exergy loss of condenser and compressor using R404A is the largest among all components. Therefore, the exergy loss in the condenser and compressor using R404A must be decreased to enhance the COP of R404A refrigeration system with R744 secondary refrigerant.

Effect of Soil Water and Shading Treatment on Chlorophyll Fluorescence Parameters and Photosynthetic Capacity in Cnidium officinale Makino (토양 수분 스트레스와 차광 처리가 천궁의 엽록소 형광반응 및 광합성에 미치는 영향)

  • Kim, Kwang Seop;Seo, Young Jin;Kim, Dong Chun;Nam, Hyo Hoon;Lee, Bu Yong;Kim, Jun hyung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.6
    • /
    • pp.412-420
    • /
    • 2020
  • Background: Measurement of chlorophyll fluorescence (CF) is useful for detection the ability of plants to tolerate environmental stresses such as drought, and excessive sunlight. Cnidium officinale Makino is highly sensitive to water stress and excessive sunlight. In this study, we evaluated the effect of soil water and shade treatment on the photosynthesis and leaf temperature change of C. officinale. Methods and Results: C. officinale was cultivated under uniform irrigation for 1 week drought stress (no watering) for 6 days. A significant decrease in CF was observed on the 5th day of withholding water (approximately 6% of soil water content) regardless of shading. Notably, the Rfd_lss parameter (CF decrease rates) with and without shade treatment was reduced by 73.1% and 56.5% respectively, at 6 days compared with those at the initial stage (0 day). The patterns of the degree of CF parameters corresponded to those of the soil water content and difference between leaf temperature (Ts) and air temperature (Ta). Meanwhile, CF parameters recovered to the 3 - 4 days levels after re-watering, while the soil water potential was completely restored. The suitable soil water content for C. officinale optimal growth was between -5 kPa and -10 kPa in this experiment. Conclusions: Lack of soil water in the cultivation of C. officinale, even with shading, decreased latent heat cooling through transpiration. As a result, heat dissipation declined, and the plant was subjected to drought stress. Soil water content plays a major role in photosynthesis and leaf temperature in C. officinale.

Establishment of Bovine Ovum Bank : I. Full Term Development of Vitrified Hanwoo (Korean Cattle) In Vitro Matured Oocytes by Minimum Volume Cooling (MVC) Method

  • 김은영;김덕임;이문걸;이종우;이금실;박세영;박은미;윤지연;허영태
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.5-5
    • /
    • 2001
  • This study was to test whether Hanwoo in vitro matured oocytes can be successfully cryopreserved by a new vitrification procedure using MVC method. For the vitrification, oocytes were pretreated in 10% ethylene glycol (EG10) for 5-10 min, exposed in EG30 for 30 sec, each oocytes were individually put on the inner wall of 0.25 $m\ell$ straw, and then straws were directly plunged into L$N_2$. Thawing was taken by 4-step procedures [1.0 Msucrose (MS), 0.5 MS, 0.25 MS, and 0.125 MS] at 37$^{\circ}C$. In vitro developmental capacity (survival, cleavage ($\geq$2-cell) and blastocyst rates) in vitrified group was no significant difference compared to that in other treatment groups (exposed; 100.0, 74.4, 32.3% and control; 100.0, 78.3, 36.3%): high mean percentage of oocytes (91.2%) was survived, 69.4% of them were cleaved and 27.9% of cleaved embryos were developed to blastocyst. Especially, after transfer of in vitro developed embryos in vitrified group, four of six recipient animals were found to pregnant and three of them were ongoing pregnant by manual palpation at 250 days after transfer. However, among them, two healthy female calves (23 and 25kg) were born. This result demonstrates that MVC method is very appropriate freezing method for the Hanwoo in vitro matured oocytes and that ovum bank can be maintained efficiently by MVC cryopreservation method.

  • PDF

High Power Factor Dual Half Bridge Series Resonant Inverter for an Induction Heating Appliance with Multiple Loads (다부하를 갖는 유도가열기기를 위한 고역률 이중 하프브릿지 직렬공진 인버터)

  • 정용채
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.307-314
    • /
    • 1998
  • A novel high power factor Dual Half Bridge Series Resonant Inverter (DHB-SRI) for an induction heating appliance with multiple loads is proposed to remove the interferential acoustic noise caused by the difference between operating frequencies of adjacent loads. The circuit enables independent full power range control of two induction heating elements by one inverter circuit and has minimum switching losses due to the zero voltage switching characteristic. According to the mode analysis, I will explain the operation of the proposed circuit. To evaluate the required cooling capacity, loss analysis is performed through deriving some loss equations. In order to obtain the power factor correction capability and to lessen the system size, suitable design guides are given. Using the designed values, the proto-type circuit with 2.8kW power consumption for each induction heating element is built and tested to verify the operation of the proposed circuit.

  • PDF