• Title/Summary/Keyword: cooling

Search Result 9,954, Processing Time 0.038 seconds

Quality Characteristics and Retarding Retrogradation of Sponge Cakes containing Red Yeast Rice(Monascus nuruk) Flour (홍국(Monascus nuruk) 분말을 첨가한 스폰지 케이크의 품질 특성 및 노화 억제 분석)

  • Song, Ka-Young;Kim, Jong-Hee;O, Hyeon Bin;Zhang, Yangyang;Kim, Young-Soon
    • Culinary science and hospitality research
    • /
    • v.22 no.3
    • /
    • pp.11-21
    • /
    • 2016
  • This study investigated the quality characteristics and retarding retrogradation of sponge cakes made with red yeast rice (RYR) flour. RYR (Monascus nuruk) is known to help digestion, smooth blood flow, and have anti-cancer, anti-microbial, and inhibitory effects against biosynthesis of cholesterol and blood pressure. This studys aim' was to find the optimal proportion of RYR flour in sponge cake. RYR sponge cakes were prepared with various levels (0, 5, 10, 15 and 20%) replacement of wheat flour and were designated as the control (without RYR), RYR5, RYR10, RYR15 and RYR20 respectively. Specific gravity was the lowest in RYR15 at 0.57, and the baking loss rate was not significantly different among the samples (p<0.05). The dough yield was the highest in RYR15 at 96.61. The moisture contents was highest in order, control, RYR5, and RYR15 at 28.67%, 28.18%, and 26.82% respectively. The L-value of crust tended to increase according to the level of RYR, but the L-value of crumb decreased in accorddance with the the content of RYR. The a-value of crust also decreased according to the level of RYR, although the a-value of crumb increased in response to higher levels of RYR. The b-value tended to decrease with increases of RYR (p<0.05). RYR5 exhibited the highest pH at 8.63, compared with RYR15 (8.57). The hardness, which was measured after cooling for 1 hour, was the lowest in RYR15 at $163.33g/cm^2$ and the springiness was not different significantly (p<0.05). Cohesiveness was the highest in RYR10 at 133.06%. The chewiness was the highest in RYR10 at $391.63g{\cdot}cm$ and lowest in RYR15 ast $169.62g{\cdot}cm$. Avrami equation showed that RYR15 and RYR20 had the lowest Avrami exponent (n) at 0.0664 and 0.4983 respectively. Time constant (1/k) was the highest in RYR15 at 200.00. Sensory evaluation revealed that RYR15 was the highest in color (5.50), flavor (4.95), sweetness (4.90), chewiness (4.75), and overall acceptability (4.60).

Fluid Inclusion and Stable Isotope Studies of the Kwangsin Pb-Zn Deposit (광신 연 - 아연 광상의 유체포유물 및 안정동위원소 연구)

  • Choi, Kwang-Jun;Yun, Seong-Taek;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.505-517
    • /
    • 1997
  • Lead and zinc mineralization of the Kwangsin mine was formed in quartz and carbonate veins that filled fault-related fractures in the limestone-rich Samtaesan Formation of the Chosun Supergroup and the phyllite-rich Suchangni Formation of unknown age. A K-Ar date of alteration sericite indicates that the Pb-Zn mineralization took place during Late Cretaceous (83.5 Ma), genetically in relation to the cooling of the nearby Muamsa Granite (83~87 Ma). Mineral paragenesis can be divided into three stages (I, II, III): (I) the deposition of barren massive white quartz, (II) the main Pb-Zn mineralization with deposition of white crystalline quartz and/or carbonates (rhodochrosite and dolomite), and (III) the deposition of post-ore barren calcite. Mineralogic and fluid inclusion data indicate that lead-zinc minerals in middle stage II (IIb) were deposited at temperatures between $182^{\circ}$ and $276^{\circ}C$ from fluids with salinities of 2.7 to 5.4 wt. % equiv. NaCl and with log $fs_2$ values of -15.5 to -11.8 atm. The relationship between homogenization temperature and salinity data indicates that lead-zinc deposition was a result of fluid boiling and later meteoric water mixing. Ore mineralization occurred at depths of about 600 to 700 m. Sulfur isotope compositions of sulfide minerals (${\delta}^{34}S_{CDT}=9.0{\sim}14.5$ ‰) indicate a relatively high ${\delta}^{34}S_{{\Sigma}S}$ value of ore fluids (up to 14 ‰), likely indicating an igneous source of sulfur largely mixed with an isotopically heavier sulfur source (possibly sulfates in surrounding sedimentary rocks). There is a remarkable decrease of calculated ${\delta}^{18}O$ value of water in hydrothermal fluids with increasing paragenetic time: stage I, 14.6~10.1 ‰; stage IIa, 5.8~2.2 ‰; stage IIb, 0.8~2.0 ‰; stage IIc, -6.1~-6.8 ‰, This indicates a progressive increase of meteoric water influx in the hydrothermal system at Kwangsin. Measured and calculated hydrogen and oxygen isotope values indicate that the Kwangsin hydrothermal fluids was formed from a circulating (due to intrusion of the Muamsa Granite) meteoric waters which evolved through interaction mainly with the Samtaesan Formation (${\delta}^{18}O=20.1$ to 24.9 ‰) under low water/rock ratios.

  • PDF

Error Analysis of Three Types of Satellite-observed Surface Skin Temperatures in the Sea Ice Region of the Northern Hemisphere (북반구 해빙 지역에서 세 종류 위성관측 표면온도에 대한 오차분석)

  • Kang, Hee-Jung;Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.36 no.2
    • /
    • pp.139-157
    • /
    • 2015
  • We investigated the relative errors of satellite-observed Surface Skin Temperature (SST) data caused by sea ice in the northern hemispheric ocean ($30-90^{\circ}N$) during April 16-24, 2003-2014 by intercomparing MODerate Resolution Imaging Spectroradiometer (MODIS) Ice Surface Temperature (IST) data with two types of Atmospheric Infrared Sounder (AIRS) SST data including one with the AIRS/Advanced Microwave Sounding Unit-A (AMSU) and the other with 'AIRS only'. The MODIS temperatures, compared to the AIRS/AMSU, were systematically up to ~1.6 K high near the sea ice boundaries but up to ~2 K low in the sea ice regions. The main reason of the difference of skin temperatures is that the MODIS algorithm used infrared channels for the sea ice detection (i.e., surface classification), while microwave channels were additionally utilized in the AIRS/AMSU. The 'AIRS only' algorithm has been developed from NASA's Goddard Space Flight Center (NASA/GSFC) to prepare for the degradation of AMSU-A by revising part of the AIRS/AMSU algorithm. The SST of 'AIRS only' compared to AIRS/AMSU showed a bias of 0.13 K with RMSE of 0.55 K over the $30-90^{\circ}N$ region. The difference between AIRS/AMSU and 'AIRS only' was larger over the sea ice boundary than in other regions because the 'AIRS only' algorithm utilized the GCM temperature product (NOAA Global Forecast System) over seasonally-varying frozen oceans instead of the AMSU microwave data. Three kinds of the skin temperatures consistently showed significant warming trends ($0.23-0.28Kyr^{-1}$) in the latitude band of $70-80^{\circ}N$. The systematic disagreement among the skin temperatures could affect the discrepancies of their trends in the same direction of either warming or cooling.

Qualitative Changes in Maturity, Precooling Temperatures and Light Illumination on the Post-harvest Management of the Fruits in 'Maehyang' Strawberry for Export (수출딸기 '매향'의 수확후 숙도, 예냉온도 및 광조사에 따른 품질변화)

  • Kim, Hye Min;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.432-438
    • /
    • 2013
  • A study was conducted to examine the effect of maturity and precooling ($60%/0^{\circ}C$ and $80%/4^{\circ}C$), and light illumination on the storage life of 'Maehyang' strawberry meant for export. Fruits at 60% and 80% ripened stage were harvested from a commercial greenhouse in Jinju on April 3, 2012. Harvested fruits were transported to the precooling system within 30 minutes. Transported fruits were precooled the $4^{\circ}C$ for 2 hours and $0^{\circ}C$ for 5 hours by a forced draft cooling system, and then stored at $6^{\circ}C$. During the storage, the fruits were examined for their changes in hardness, soluble solid content, quality grade, acidity, Hunter value, weight loss, and the incidence of gray mold (Botrytis cinerea) at an interval of two days from April 5 to April 17. Hardness was decreased until 7th days and it was changed to increase at 9th days. Treatment of 60% maturity, $0^{\circ}C$ precooling and no light illumination of strawberry were shown the highest value in freshness. The soluble solid content harvested in 80% maturity strawberry was higher than 60% maturity strawberry until the third day. Quality grade decreased rapidly in 80% maturity stage with light illumination strawberry in comparison to the 60% maturity stage of strawberry. Hunter value 'L' and 'a' showed a rapid change in 60% maturity stage of strawberry. Weight loss decreased rapidly in 80% maturity, $0^{\circ}C$ precooling, and no light illumination of strawberry treatments. Gray mold incidence was found the most at 60% maturity, $4^{\circ}C$ precooling, and light illumination of strawberry. The results from our study indicate that effectiveness for keeping the freshness of strawberry was best achieved by harvesting in low maturity, precooling at $0^{\circ}C$, and with no light illumination.

Computational Fluid Dynamics Study of Channel Geometric Effect for Fischer-Tropsch Microchannel Reactor (전산유체역학을 이용한 Fischer-Tropsch 마이크로채널 반응기의 채널 구조 영향 분석)

  • Na, Jonggeol;Jung, Ikhwan;Kshetrimayum, Krishnadash S.;Park, Seongho;Park, Chansaem;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.826-833
    • /
    • 2014
  • Driven by both environmental and economic reasons, the development of small to medium scale GTL(gas-to-liquid) process for offshore applications and for utilizing other stranded or associated gas has recently been studied increasingly. Microchannel GTL reactors have been prefrered over the conventional GTL reactors for such applications, due to its compactness, and additional advantages of small heat and mass transfer distance desired for high heat transfer performance and reactor conversion. In this work, multi-microchannel reactor was simulated by using commercial CFD code, ANSYS FLUENT, to study the geometric effect of the microchannels on the heat transfer phenomena. A heat generation curve was first calculated by modeling a Fischer-Tropsch reaction in a single-microchannel reactor model using Matlab-ASPEN integration platform. The calculated heat generation curve was implemented to the CFD model. Four design variables based on the microchannel geometry namely coolant channel width, coolant channel height, coolant channel to process channel distance, and coolant channel to coolant channel distance, were selected for calculating three dependent variables namely, heat flux, maximum temperature of coolant channel, and maximum temperature of process channel. The simulation results were visualized to understand the effects of the design variables on the dependent variables. Heat flux and maximum temperature of cooling channel and process channel were found to be increasing when coolant channel width and height were decreased. Coolant channel to process channel distance was found to have no effect on the heat transfer phenomena. Finally, total heat flux was found to be increasing and maximum coolant channel temperature to be decreasing when coolant channel to coolant channel distance was decreased. Using the qualitative trend revealed from the present study, an appropriate process channel and coolant channel geometry along with the distance between the adjacent channels can be recommended for a microchannel reactor that meet a desired reactor performance on heat transfer phenomena and hence reactor conversion of a Fischer-Tropsch microchannel reactor.

0.1 MW Test Bed CO2 Capture Studies with New Absorbent (KoSol-5) (신 흡수제(KoSol-5)를 적용한 0.1 MW급 Test Bed CO2 포집 성능시험)

  • Lee, Junghyun;Kim, Beom-Ju;Shin, Su Hyun;kwak, No-Sang;Lee, Dong Woog;Lee, Ji Hyun;Shim, Jae-Goo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.391-396
    • /
    • 2016
  • The absorption efficiency of amine $CO_2$ absorbent (KoSol-5) developed by KEPCO research institute was evaluated using a 0.1 MW test bed. The performance of post-combustion technology to capture two tons of $CO_2$ per day from a slipstream of the flue gas from a 500 MW coal-fired power station was first confirmed in Korea. Also the analysis of the absorbent regeneration energy was conducted to suggest the reliable data for the KoSol-5 absorbent performance. And we tested energy reduction effects by improving the absorption tower inter-cooling system. Overall results showed that the $CO_2$ removal rate met the technical guideline ($CO_2$ removal rate : 90%) suggested by IEA-GHG. Also the regeneration energy of the KoSol-5 showed about $3.05GJ/tonCO_2$ which was about 25% reduction in the regeneration energy compared to that of using the commercial absorbent MEA (Monoethanolamine). Based on current experiments, the KoSol-5 absorbent showed high efficiency for $CO_2$ capture. It is expected that the application of KoSol-5 to commercial scale $CO_2$ capture plants could dramatically reduce $CO_2$ capture costs.

In vitro Development of Somatic Cell Nuclear Transferred Bovine Embryos Following Activation Timing in Enucleated and Cryopreserved MII Oocytes (탈핵 후 동결한 MII 난자의 활성화 시기가 체세포 핵치환 이후 소 난자의 체외발달에 미치는 영향)

  • 박세필;김은영;김선균;이영재;길광수;박세영;윤지연;이창현;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.3
    • /
    • pp.245-252
    • /
    • 2002
  • This study was to evaluate the in vitro survival of bovine enucleated MII (eMII) oocytes according to minimum volume cooling (MVC) freezing method and activation timing, and their in vitro development after somatic cell nuclear transfer (SONT). in vitro matured bovine oocytes for 20 h were stained with 5 $\mu\textrm{g}$/$m\ell$ Hoechst, and their 1st polar body and MII plate were removed by enucleation micropipette under UV filter. Also, eMII oocytes were subjected to activation after (group II) and before (group III) vitrification in 5 ${\mu}{\textrm}{m}$ ionomycin added CRlaa medium for 5 min. For vitrification, eMll oocytes were pretreated with EG10 for 5 min, exposed to EG30 for 30 sec and then directly plunged into L$N_2$. Thawing was taken by 4-step procedures at 37$^{\circ}C$. Survived eMII oocytes were subjected to SONT with cultured adult bovine ear cells. Reconstructed oocytes were cultured in 10 $\mu\textrm{g}$/$m\ell$ of cycloheximide and 2.5 $\mu\textrm{g}$/$m\ell$ of cytochalasin D added CRlaa medium for 1 h, and then in 10 $\mu\textrm{g}$/$m\ell$ of cycloheximide added CRlaa medium for 4 h. Subsequently, the reconstructed oocytes were incubated for 2 days and cleaved embryos were further cultured on cumulus-cell monolayer drop in CRlaa medium for 6 days. Survival rates of bovine vitrified-thawed eMII oocytes in group II (activation after vitrification and thawing) and III (activation before vitrification) were 81.0% and 84.9%, respectively. Fusion rates of cytoplasts and oocytes in group II and III were 69.0% and 70.0%, respectively, and their results were not different with non-frozen NT group (control, 75.2%). Although their cleaved rates (53.4% and 58.4%) were not different, cytoplasmic fragment rate in group II (32.8%) was significantly higher than that in group III (15.6%)(P<0.05). Also, subsequent development rate into >morula in group II (8.6%) was low than that in group III(15.6%). However, in vitro development rate in group III was not different with that in control (24.8%). This result suggested that MVC method was appropriate freezing method for the bovine eMII oocytes and vitrified eMII oocytes after pre-activation could support in vitro embryonic development after SONT as equally well as fresh oocytes.

Genetic Model of Mineral Exploration for the Korean Au-Ag Deposits; Mugeug Mineralized Area (한국 금-은 광상의 효율적 탐사를 위한 성인모델;무극 광화대를 중심으로)

  • 최선규;이동은;박상준;최상훈;강흥석
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.423-435
    • /
    • 2001
  • The gold-silver vein deposits in the Mugeug mineralized area are emplaced in late Cretaceous biotite granite associated with the pull-apart type Cretaceous Eumseong basin. Mugeug mine in northern part is composed of multiple veins showing relatively high gold fineness and is characterized by sericitization, chloritization and epidotization. The ore-forming fluids were evolved by dilution and cooling mechanisms at relatively high temperature and salinity (=30$0^{\circ}C$,1~9 equiv. wt. % NaCl) and highly-evolved meteoric water ($\delta$$^{18}$ O;-1.2~3.7$\textperthousand$) and gold mineralization associated with sulfides tormed at temperatures between 260 and 22$0^{\circ}C$ and within sulfur fugacity range of 10$^{-11.5}$ ~ 10$^{-13.5}$ atm. In contrast, Geumwang, Geumbong and Taegueg mines show the low fineness values, in southern part are characterized by increasing tendency of simple and/or stockwork veins and by kaolinitization, silicificatitan, carbonatization and smectitization. These droposits formed at relatively low temperature and salinity (<23$0^{\circ}C$, <3 equiv. wt. % NaCl) from ore-forming fluids containing greater amounts of less-evolved meteoric waters ($\delta$$^{18}$ O;-5.5~4.0$\textperthousand$), and silver mineralization representing various gold-and/or silver-bearing minerals formed at temperatures between 200 and 15$0^{\circ}C$ and from sulfur fugacity range of 10$^{-15}$ ~10$^{-18}$ atm These results imply that mineralization in the Mugueg area formed at shallow-crustal level and categorize these deposits as low-sulfidation epithermal type. The genetic differences between the northern and southern parts reflect the evolution of the hydrothermal system due to a different physicochemical environment from heat source area (Mugeug mine) to marginal area (Taegeum mine) in a geothermal field.

  • PDF

A Study on the Water Reuse Systems (중수도개발연구(中水道開發研究))

  • Park, Chung Hyun;Lee, Seong Key;Chung, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.113-125
    • /
    • 1984
  • Water supply has been mainly dependent on the construction of the dams in Korea. It is difficult, however, to continue to construct dams for many reasons, such as the decrease of construction sites, the increase of construction costs, the compensation of residents in flooded areas, and the environmental effects. Water demands have increased and are expected to continue increasing due to the concentration of people in the cities, the rise of the living standard, and rapid industrial growth. It is acutely important to find countermeasures such as development of ground water, desalination, and recycling of waste water to cope with increasing water demands. Recycling waste water includes all means of supplying non-potable water for their respective usages with proper water quality which is not the same quality as potable water. The usages of the recycled water include toilet flushing, air conditioning, car washing, yard watering, road cleaning, park sprinkling, and fire fighting, etc. Raw water for recycling is obtained from drainage water from buildings, toilets, and cooling towers, treated waste water, polluted rivers, ground water, reinfall, etc. The water quantity must be considered as well as its quality in selecting raw water for the recycling. The types of recycling may be classified roughly into closed recycle systems and open recycle systems, which can be further subdivided into individual recycle systems, regional recycle systems and large scale recycle system. The treatment methods of wastewater combine biochemical and physiochemical methods. The former includes activated sludge treatment, bio-disc treatment, and contact aeration treatment, and the latter contains sedimentation, sand filtration, activated carbon adsorption, ozone treatment, chlorination, and membrane filter. The recycling patterns in other countries were investigated and the effects of the recycling were divided into direct and indirect effects. The problems of water reuse in recycle patterns were also studied. The problems include technological, sanitary, and operational problems as well as cost and legislative ones. The duties of installation and administrative organization, structural standards for reuse of water, maintenance and financial disposal were also studied.

  • PDF

Estimation of the Required Number of Fan Coil Unit for Surplus Solar Energy Recovery of Greenhouse (온실의 잉여 태양에너지 회수용 FCU 소요대수 검토)

  • Yun, Sung-Wook;Choi, Man Kwon;Kim, Ha Neul;Kang, Donghyeon;Lee, Siyoung;Son, Jinkwan;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.83-88
    • /
    • 2016
  • In this study, previously reported surplus solar energy-related study result and current status of fan coil unit (FCU) for cooling and heating installed in the current sites were briefly examined and then a method to determine the number of FCUs required to recover surplus solar energy was schematically proposed to provide basic data for researchers and technical engineers in this field. The maximum, mean, and minimum outside temperatures during the experiment period were about $28.2^{\circ}C$, $4.4^{\circ}C$, and $-11.5^{\circ}C$, respectively. The horizontal surface solar radiation level outside the greenhouse was in a range of $0.8-20.5MJ{\cdot}m^{-2}$ and mean and total solar radiation were $10.8MJ{\cdot}m^{-2}$ and $1,187.5MJ{\cdot}m^{-2}$. The mean temperature and relative humidity in the greenhouse during the daytime were in a range of 18.8-45.5 and 53.5-77.5%. The total surplus solar energy recovered from the greenhouse during the experiment period was approximately 6,613.4MJ, which could supplement about 6.7% of the total heating energy 98,600.2 MJ. In addition, the number of FCUs installed for heating varies case to case, although similar FCUs are used. Thus, it is necessary to study the installation height, orientation and installation distance as well as the appropriate number of FCUs from the efficient and economical viewpoints. The required numbers of FCUs for surplus solar energy recovery were 8.4-10.9units and 6.1-8.0units based on air mass and circular flow rate that passed through the FCUs. Considering calculation methods and the risks such as efficiency and use environments of FCUs, it was found that about nine units (one unit per $24m^3$ approximately) needed to be installed. The required number of FCUs for surplus solar energy recovery was around one unit per $24m^3$ approximately.