• Title/Summary/Keyword: cooked ground pork

Search Result 34, Processing Time 0.022 seconds

Effects of Natural Antioxidants on Lipid Oxidation of Ground Pork (천연항산화제가 분쇄돈육의 지질산화에 미치는 효과)

  • Shin, Teak-Soon;Moon, Jeom-Dong;Kim, Yong-Kon;Kim, Young-Jik;Park, Tea-Seon;Lee, Jeong-Ill;Park, Gu-Boo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.794-802
    • /
    • 1998
  • This study was conducted to investigate the effects of antioxidants on lipid oxidation in uncooked ground pork which was treated with ${\alpha}-tocopherol$, GFSE (grapefruit seed extract), carnosine and rosemary, respectively. The ground pork samples were uncooked and cooked during 10 days of storage at $4{\pm}1^{\circ}C$, respectively. The lipid oxidation and fatty acids composition were analyzed for over a periods of storage day. From the results mentioned above, antioxidative activity on lipid oxidation of uncooked ground pork appeared to be in order of carnosine > rosemary > ${\alpha}-tocopherol$ > GFSE. It would not be problem that addition of carnosine in uncooked ground of resulted in an increase of pH because the high pH could be advantageous on processing of meat. Antioxidative activity on lipid oxidation of cooked ground pork appeared to be in order of carnosine > rosemary > ${\alpha}-tocopherol$ > GFSE. Although the antioxidants were not lost their antioxidative }ctivities after cooking, their antioxidative activities in cooked ground pork were not higher than that of uncooked ground pork. That addition of carnosine increased the pH of cooked ground pork, too.

  • PDF

The Relationship between Fat Level and Quality Properties of Ground Pork Patties Cooked by Microwave Energy (전자레인지 가열시 분쇄 돈육 패티의 지방함량과 가열특성과의 상관관계에 관한 연구)

  • Choi, Ji-Hyun;Jeong, Jong-Youn;Choi, Yun-Sang;Lee, Eui-Soo;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.28 no.3
    • /
    • pp.295-300
    • /
    • 2008
  • This study was carried out to elucidate the relationship between different fat levels (0%, 5%, 10%, 15%, 20%, and 25%) and the quality of ground pork patties cooked to reach an internal temperature of $75^{\circ}C$ in a microwave oven. The relationship between fat level and cooking rate of pork patties cooked by microwave energy was highly significant ($R^2=0.72$), and had a low determination coefficient ($R^2=0.55$). The relationship between fat level and total cooking loss of pork patties cooked by microwave energy was also very significant, with a high correlation coefficient of $R^2=0.89$. The correlation coefficient between fat level and cooking drip loss of patties cooked by microwave energy was 0.92, which was highly significant. Although the correlation coefficient between fat level and evaporation loss had a negative value ($R^2=-0.63$), there was a highly significant relationship between fat level and shear force of pork patties cooked by microwave energy.

The Quality Characteristics of Salted Ground Pork Patties Containing Various Fat Levels by Microwave Cooking

  • Jeong, Jong Youn;Lim, Seung Taek;Kim, Cheon Jei
    • Food Science of Animal Resources
    • /
    • v.36 no.4
    • /
    • pp.538-546
    • /
    • 2016
  • This study was carried out to evaluate the effects of fat level on the microwave cooking properties of ground pork patties with NaCl (1.5%). Ground pork patties were processed from pork hams to achieve fat levels of 10%, 15%, 20%, and 25%, respectively. Each patty was cooked from a thawed state to 75℃ in a microwave oven at full power (700 W). After microwave cooking, protein content, moisture content, fat retention, and shear force values in patties decreased as fat level increased from 10 to 25%. As fat level increased, cooking time decreased but total cooking loss and drip loss were increased, whereas slight differences in diameter reduction and thickness of patties were observed. In raw patties, 10% fat patties had lower L* values and higher a* values compared to patties with more fat, but these differences were reduced when patties were cooked. Patties with 10% fat showed a more pink color on the surface and interior than patties with a higher fat content but more air pockets were noted in higher-fat patties. Higher-fat patties were more tender, juicy, and oily than lower-fat patties.

High Performance Liquid Chromatography (HPLC) Detection of Malonaldehydethiobarbituric Acid (MA-TBA) Complex in Ground Pork

  • Whang, Key
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.3
    • /
    • pp.171-174
    • /
    • 1999
  • For monitoring lipid oxidation development in cooked ground pork during refrigerationm, malonaldehydethiobarbituric acid(MA-TBA) contents were measured using high performance liquid chromatography(HPLC). As the oxidation proceeded during refergeration, TBA-reaction substances(TBARS) absorbances increased and the corresponding HPLC peak areas also increased proportationately. The correlation coefficient between the HPLC peak areas and MA-TBA absorbance were 0.9979. The treatemtn of cetrimide, an ion pairing agent, gave a complete resolution of the MA-TBA complex and the butanol extraction of the complex increased its recovery by 37.8%. Both cetrimide treatment and butanol extraction are essential steps for analyzing MA-TBA complex in ground pork wiht HPLC. A reliable and specific measurement of NA-TBA in ground pork was successfully performed using HPLC.

  • PDF

Cooking Pattern and Quality Properties of Ground Pork Patties as Affected by Microwave Power Levels (전자레인지 출력에 따른 분쇄 돈육 패티의 가열패턴 및 품질특성)

  • Jeong, Jong-Youn;Lee, Eui-Soo;Choi, Ji-Hun;Choi, Yun-Sang;Yu, Long-Hao;Lee, Si-Kyung;Lee, Chi-Ho;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.29 no.1
    • /
    • pp.82-90
    • /
    • 2009
  • This study was carried out to evaluate the effects of microwave power level on cooking properties of ground pork patties (fat level: 20%). Each patty was cooked from a thawed state to $76.7^{\circ}C$ (center temperature) in a microwave oven with power levels of 40% (360 W), 60% (540 W), 80% (720 W), and 100% (full power, 900 W), respectively. Cooking rate increased with power level, and the non-uniformity also increased with time during cooking. Overheating at the edge of the patties was observed for all power levels, and maximum temperature differences in between the edge position and center position were found in patties cooked at the 900 W power level. Compositional properties, total cooking loss, and drip loss were not affected by power level, although moisture content was lower at the edge than at the center position. As the power level increased, the reduction in patty diameter of cooked patties increased while the reduction in patty thickness decreased. Pork patties cooked at lower power levels (360 W and 540 W) had higher shear force values than those cooked at higher power levels (720 W and 900 W). Few changes were observed in instrumental color values.

Quality Characteristics of Low-fat Ground Pork Patties Containing Milk Co-precipitate

  • Kumar, Manish;Sharma, B.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.4
    • /
    • pp.588-595
    • /
    • 2003
  • The optimum level of fresh granulated low-calcium (0.2%) skim milk co-precipitate, as fat substitute in low-fat ground pork patties was determined on the basis of physico-chemical, cooking and sensory properties. Low-fat ground pork patties (<10% total fat), formulated with 15 per cent water, 4 per cent added fat, 1.5 per cent salt and 4-10 per cent milk co-precipitate, were evaluated for proximate composition, cooking characteristics and compared with control patties with 15 % added fat. The moisture and protein content of raw and cooked low-fat patties were significantly (p<0.05) higher than control. The incorporation of milk co-precipitate in low-fat patties improved cooking yield, fat and moisture retention and reduced shrinkage. The sensory properties of low-fat patties were comparable with control patties. The overall acceptability of low-fat patties formulated with 7% milk co-precipitate was significantly (p<0.05) higher than patties with 10% level and non-significantly (p<0.05) higher than low-fat patties containing 4% milk co-precipitate and control. Instrumental Texture Profiles of developed low-fat patties and control patties were comparable with slight increases in hardness and gumminess of the low-fat product. The developed low-fat ground pork patties (7% milk co-precipitate) had lower TBA values, better microbiological and sensory refrigerated storage stability than high-fat control patties packaged in air permeable films for 21 days.

Effect of Grape Skin on Physicochemical and Sensory Characteristics of Ground Pork Meat (포도과피 첨가가 분쇄돈육의 이화학적·관능적 특성에 미치는 영향)

  • Choi, Gang-Won;Lee, Jong-Wook
    • Korean journal of food and cookery science
    • /
    • v.32 no.3
    • /
    • pp.290-298
    • /
    • 2016
  • Purpose: This study aimed to investigate the effect of grape skin on the physicochemical properties and sensory score of ground pork meat. Methods: Four types of ground pork were evaluated: T0 without grape skin, T1 with 0.3% grape skin, T2 with 0.7% grape skin, and T3 with 1.0% grape skin. Results: There was no significant group wise difference in VBN content, L-value, b-value, chemical composition of raw and cooked meat, cooking yield, water holding capacity, moisture retention, fat retention, hardness, springiness, cohesiveness, gumminess, chewiness, taste, texture, juiciness, or palatability. Total polyphenol content was highest in T3, and DPPH radical scavenging activity was highest in T2 and T3 (p<0.001). The pH was highest in T0, and was lowest in T3 (p<0.001). The a-value of T2 and T3 were significantly higher than that of T0 (p<0.05). Flavor was highest in T2 among samples (p<0.01). Conclusion: The study results suggest that grape skin may be a useful ingredient in ground pork meat in terms of antioxidant potential, color and flavor.

Effects of Ethanol Extract of Bacillus polyfermenticus SCD on the Physicochemical Properties of Cooked Ground Pork during Storage (Bacillus polyfermenticus SCD 에탄을 추출물이 가열분쇄돈육의 저장 중 이화학적 특성에 미치는 영향)

  • Kim, Hack-Youn;Jeong, Jong-Youn;Choi, Ji-Hun;Choi, Yun-Sang;Han, Doo-Jeong;Lee, Mi-Ai;Lee, Jang-Hyun;Paik, Hyun-Dong;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.28 no.3
    • /
    • pp.269-275
    • /
    • 2008
  • The objective of this study was to determine the effects of 0.6% vitamin C (VC), 5% ethanol extract of B. polyfermenticus SCD (EB), and a mixture of 0.3% vitamin C and 2.5% B. polyfermenticus SCD ethanol extract (CB) on the physicochemical properties of cooked ground pork during storage. The changes in pH of VC, EB, and CB were smaller than was observed with the control (CON, no added antioxidant). VC, EB, and CB exhibited significantly lower TBARS values than CON during storage (p<0.05). Longer storage periods resulted in higher TBARS values (p<0.05). VBN values for VC, EB, and CB were significantly lower than CON (p<0.05). The L values of CON and VC were higher than EB and CB (p<0.05). The a value of VC was significantly lower than CON, EB, and CB during storage (p<0.05). The b values of all samples significantly increased during storage (p<0.05). The addition of vitamin C and B. polyfermenticus SCD to cooked ground pork did not significantly affect sensory evaluations during the storage period (p>0.05). Further studies are needed to develop other meat products containing B. polyfermenticus SCD with acceptable physicochemical properties.

Egg Shell and Oyster Shell Powder as Alternatives for Synthetic Phosphate: Effects on the Quality of Cooked Ground Pork Products

  • Cho, Min Guk;Bae, Su Min;Jeong, Jong Youn
    • Food Science of Animal Resources
    • /
    • v.37 no.4
    • /
    • pp.571-578
    • /
    • 2017
  • This study aimed to determine the optimal ratio of natural calcium powders (oyster shell and egg shell calcium) as synthetic phosphate replacers in pork products. Ground pork samples were subjected to six treatments, as follows: control (-) (no phosphate added), control (+) (0.3% phosphate blend added), treatment 1 (0.5% oyster shell calcium powder added), treatment 2 (0.3% oyster shell calcium powder and 0.2% egg shell calcium powder added), treatment 3 (0.2% oyster shell calcium powder and 0.3% egg shell calcium powder added), and treatment 4 (0.5% egg shell calcium powder added). The addition of natural calcium powders resulted in an increase in the pH values of meat products, regardless of whether they were used individually or mixed. The highest cooking loss was observed (p<0.05) in the negative control samples, whereas the cooking loss in samples with natural calcium powder added was similar (p>0.05) to that in the positive control samples. CIE $L^*$ values decreased as the amount of added egg shell calcium powder increased. CIE $a^*$ values were higher (p<0.05) in samples containing natural calcium powder (treatments 1, 2, 3, and 4) than in the positive control. The combination of oyster shell calcium powder and egg shell powder (treatment 2 or 3) was effective for the improvement of textural properties of the pork products. The findings show that the combined use of 0.2% oyster shell calcium and 0.3% egg shell calcium should enable the replacement of synthetic phosphate in the production of cooked pork products with desirable qualities.

Effects of Calcium Powder Mixtures and Binding Ingredients as Substitutes for Synthetic Phosphate on the Quality Properties of Ground Pork Products

  • Cho, Min Guk;Jeong, Jong Youn
    • Food Science of Animal Resources
    • /
    • v.38 no.6
    • /
    • pp.1179-1188
    • /
    • 2018
  • This study aimed to investigate the combined effect of using natural calcium mixtures and various binding ingredients as replacers for synthetic phosphate in ground pork products. We performed seven treatments: control (0.3% phosphate blend), treatment 1 (0.5% natural calcium mixtures [NCM, which comprised 0.2% oyster shell calcium and 0.3% egg shell calcium powder] and 0.25% egg white powder), treatment 2 (0.5% NCM and 0.25% whey protein concentrate), treatment 3 (0.5% NCM and 0.25% concentrated soybean protein), treatment 4 (0.5% NCM and 0.25% isolated soybean protein), treatment 5 (0.5% NCM and 0.25% carrageenan), and treatment 6 (0.5% NCM and 0.25% collagen powder). All the treatment mixtures had higher pH and lower cooking loss than the control, which was treated with phosphate. We found that NCM and binding ingredients had no negative effects on the moisture content, lightness, and yellowness of the cooked ground pork products. Treatments 3 and 4 showed significantly lower CIE $a^*$ values than the control. Treatments 2 and 6 improved the textural properties of the products. In conclusion, the combination of NCM with whey protein concentrate or collagen powder could be suitable for producing phosphate-free meat products.