• 제목/요약/키워드: convolutional network

검색결과 1,581건 처리시간 0.029초

Deep Convolutional Neural Network with Bottleneck Structure using Raw Seismic Waveform for Earthquake Classification

  • Ku, Bon-Hwa;Kim, Gwan-Tae;Min, Jeong-Ki;Ko, Hanseok
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권1호
    • /
    • pp.33-39
    • /
    • 2019
  • In this paper, we propose deep convolutional neural network(CNN) with bottleneck structure which improves the performance of earthquake classification. In order to address all possible forms of earthquakes including micro-earthquakes and artificial-earthquakes as well as large earthquakes, we need a representation and classifier that can effectively discriminate seismic waveforms in adverse conditions. In particular, to robustly classify seismic waveforms even in low snr, a deep CNN with 1x1 convolution bottleneck structure is proposed in raw seismic waveforms. The representative experimental results show that the proposed method is effective for noisy seismic waveforms and outperforms the previous state-of-the art methods on domestic earthquake database.

POI Recommendation Method Based on Multi-Source Information Fusion Using Deep Learning in Location-Based Social Networks

  • Sun, Liqiang
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.352-368
    • /
    • 2021
  • Sign-in point of interest (POI) are extremely sparse in location-based social networks, hindering recommendation systems from capturing users' deep-level preferences. To solve this problem, we propose a content-aware POI recommendation algorithm based on a convolutional neural network. First, using convolutional neural networks to process comment text information, we model location POI and user latent factors. Subsequently, the objective function is constructed by fusing users' geographical information and obtaining the emotional category information. In addition, the objective function comprises matrix decomposition and maximisation of the probability objective function. Finally, we solve the objective function efficiently. The prediction rate and F1 value on the Instagram-NewYork dataset are 78.32% and 76.37%, respectively, and those on the Instagram-Chicago dataset are 85.16% and 83.29%, respectively. Comparative experiments show that the proposed method can obtain a higher precision rate than several other newer recommended methods.

FINGERPRINT IMAGE DENOISING AND INPAINTING USING CONVOLUTIONAL NEURAL NETWORK

  • BAE, JUNGYOON;CHOI, HAN-SOO;KIM, SUJIN;KANG, MYUNGJOO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제24권4호
    • /
    • pp.363-374
    • /
    • 2020
  • Fingerprint authentication identifies a user based on the individual's unique fingerprint features. Fingerprint authentication methods are used in various real-life devices because they are convenient and safe and there is no risk of leakage, loss, or oblivion. However, fingerprint authentication methods are often ineffective when there is contamination of the given image through wet, dirty, dry, or wounded fingers. In this paper, a method is proposed to remove noise from fingerprint images using a convolutional neural network. The proposed model was verified using the dataset from the ChaLearn LAP Inpainting Competition Track 3-Fingerprint Denoising and Inpainting, ECCV 2018. It was demonstrated that the model proposed in this paper obtains better results with respect to the methods that achieved high performances in the competition.

GRAYSCALE IMAGE COLORIZATION USING A CONVOLUTIONAL NEURAL NETWORK

  • JWA, MINJE;KANG, MYUNGJOO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제25권2호
    • /
    • pp.26-38
    • /
    • 2021
  • Image coloration refers to adding plausible colors to a grayscale image or video. Image coloration has been used in many modern fields, including restoring old photographs, as well as reducing the time spent painting cartoons. In this paper, a method is proposed for colorizing grayscale images using a convolutional neural network. We propose an encoder-decoder model, adapting FusionNet to our purpose. A proper loss function is defined instead of the MSE loss function to suit the purpose of coloring. The proposed model was verified using the ImageNet dataset. We quantitatively compared several colorization models with ours, using the peak signal-to-noise ratio (PSNR) metric. In addition, to qualitatively evaluate the results, our model was applied to images in the test dataset and compared to images applied to various other models. Finally, we applied our model to a selection of old black and white photographs.

합성곱신경망을 활용한 과구동기 시스템을 가지는 소형 무인선의 추진기 고장 감지 (Fault Detection of Propeller of an Overactuated Unmanned Surface Vehicle based on Convolutional Neural Network)

  • 백승대;우주현
    • 대한조선학회논문집
    • /
    • 제59권2호
    • /
    • pp.125-133
    • /
    • 2022
  • This paper proposes a fault detection method for a Unmanned Surface Vehicle (USV) with overactuated system. Current status information for fault detection is expressed as a scalogram image. The scalogram image is obtained by wavelet-transforming the USV's control input and sensor information. The fault detection scheme is based on Convolutional Neural Network (CNN) algorithm. The previously generated scalogram data was transferred learning to GoogLeNet algorithm. The data are generated as scalogram images in real time, and fault is detected through a learning model. The result of fault detection is very robust and highly accurate.

A Study on the Life Prediction of Lithium Ion Batteries Based on a Convolutional Neural Network Model

  • Mi-Jin Choi;Sang-Bum Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권3호
    • /
    • pp.118-121
    • /
    • 2023
  • Recently, green energy support policies have been announced around the world in accordance with environmental regulations, and asthe market grows rapidly, demand for batteries is also increasing. Therefore, various methodologies for battery diagnosis and recycling methods are being discussed, but current accurate life prediction of batteries has limitations due to the nonlinear form according to the internal structure or chemical change of the battery. In this paper, CS2 lithium-ion battery measurement data measured at the A. James Clark School of Engineering, University of Marylan was used to predict battery performance with high accuracy using a convolutional neural network (CNN) model among deep learning-based models. As a result, the battery performance was predicted with high accuracy. A data structure with a matrix of total data 3,931 ☓ 19 was designed as test data for the CS2 battery and checking the result values, the MAE was 0.8451, the RMSE was 1.3448, and the accuracy was 0.984, confirming excellent performance.

Void detection for tunnel lining backfill using impact-echo method based on continuous wavelet transform and convolutional neural network

  • Jiyun Lee;Kyuwon Kim;Meiyan Kang;Eun-Soo Hong;Suyoung Choi
    • Geomechanics and Engineering
    • /
    • 제36권1호
    • /
    • pp.1-8
    • /
    • 2024
  • We propose a new method for detecting voids behind tunnel concrete linings using the impact-echo method that is based on continuous wavelet transform (CWT) and a convolutional neural network (CNN). We first collect experimental data using the impact-echo method and then convert them into time-frequency images via CWT. We provide a CNN model trained using the converted images and experimentally confirm that our proposed model is robust. Moreover, it exhibits outstanding performance in detecting backfill voids and their status.

Application of Ground Penetrating Radar (GPR) coupled with Convolutional Neural Network (CNN) for characterizing underground conditions

  • Dae-Hong Min;Hyung-Koo Yoon
    • Geomechanics and Engineering
    • /
    • 제37권5호
    • /
    • pp.467-474
    • /
    • 2024
  • Monitoring and managing the condition of underground utilities is crucial for ground stability. This study aims to determine whether images obtained using ground penetrating radar (GPR) accurately reflect the characteristics of buried pipelines through image analysis. The investigation focuses on pipelines made from different materials, namely concrete and steel, with concrete pipes tested under various diameters to assess detectability under differing conditions. A total of 400 images are acquired at locations with pipelines, and for comparison, an additional 100 data points are collected from areas without pipelines. The study employs GPR at frequencies of 200 MHz and 600 MHz, and image analysis is performed using machine learning-based convolutional neural network (CNN) techniques. The analysis results demonstrate high classification reliability based on the training data, especially in distinguishing between pipes of the same material but of different diameters. The findings suggest that the integration of GPR and CNN algorithms can offer satisfactory performance in exploring the ground's interior characteristics.

A Parallel Deep Convolutional Neural Network for Alzheimer's disease classification on PET/CT brain images

  • Baydargil, Husnu Baris;Park, Jangsik;Kang, Do-Young;Kang, Hyun;Cho, Kook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권9호
    • /
    • pp.3583-3597
    • /
    • 2020
  • In this paper, a parallel deep learning model using a convolutional neural network and a dilated convolutional neural network is proposed to classify Alzheimer's disease with high accuracy in PET/CT images. The developed model consists of two pipelines, a conventional CNN pipeline, and a dilated convolution pipeline. An input image is sent through both pipelines, and at the end of both pipelines, extracted features are concatenated and used for classifying Alzheimer's disease. Complimentary abilities of both networks provide better overall accuracy than single conventional CNNs in the dataset. Moreover, instead of performing binary classification, the proposed model performs three-class classification being Alzheimer's disease, mild cognitive impairment, and normal control. Using the data received from Dong-a University, the model performs classification detecting Alzheimer's disease with an accuracy of up to 95.51%.

컬러 입력 영상을 갖는 Convolutional Neural Networks를 이용한 QFN 납땜 불량 검출 (QFN Solder Defect Detection Using Convolutional Neural Networks with Color Input Images)

  • 김호중;조태훈
    • 반도체디스플레이기술학회지
    • /
    • 제15권3호
    • /
    • pp.18-23
    • /
    • 2016
  • QFN (Quad Flat No-leads Package) is one of the SMD (Surface Mount Device). Since there is no lead in QFN, there are many defects on solder. Therefore, we propose an efficient mechanism for QFN solder defect detection at this paper. For this, we employ Convolutional Neural Network (CNN) of the Machine Learning algorithm. QFN solder's color multi-layer images are used to train CNN. Since these images are 3-channel color images, they have a problem with applying to CNN. To solve this problem, we used each 1-channel grayscale image (Red, Green, Blue) that was separated from 3-channel color images. We were able to detect QFN solder defects by using this CNN. In this paper, it is shown that the CNN is superior to the conventional multi-layer neural networks in detecting QFN solder defects. Later, further research is needed to detect other QFN.