• Title/Summary/Keyword: convolutional codes

Search Result 132, Processing Time 0.024 seconds

Performance Of Iterative Decoding Schemes As Various Channel Bit-Densities On The Perpendicular Magnetic Recording Channel (수직자기기록 채널에서 기록 밀도에 따른 반복복호 기법의 성능)

  • Park, Dong-Hyuk;Lee, Jae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7C
    • /
    • pp.611-617
    • /
    • 2010
  • In this paper, we investigate the performances of the serial concatenated convolutional codes (SCCC) and low-density parity-check (LDPC) codes on perpendicular magnetic recording (PMR) channels. We discuss the performance of two systems when user bit-densities are 1.7, 2.0, 2.4 and 2.8, respectively. The SCCC system is less complex than LDPC system. The SCCC system consists of recursive systematic convolutional (RSC) codes encoder/decoder, precoder and random interleaver. The decoding algorithm of the SCCC system is the soft message-passing algorithm and the decoding algorithm of the LDPC system is the log domain sum-product algorithm (SPA). When we apply the iterative decoding between channel detector and the error control codes (ECC) decoder, the SCCC system is compatible with the LDPC system even at the high user bit density.

Error Control Coding and Space-Time MMSE Multiuser Detection in DS-CDMA Systems

  • Hamouda, Walaa;McLane, Peter J.
    • Journal of Communications and Networks
    • /
    • v.5 no.3
    • /
    • pp.187-196
    • /
    • 2003
  • We consider the use of error control coding in direct sequence-code-division multiple access (OS-COMA) systems that employ multiuser detection (MUO) and space diversity. The relative performance gain between Reed-Solomon (RS) code and convolutional code (CC) is well known in [1] for the single user, additive white Gaussian noise (AWGN) channel. In this case, RS codes outperform CC's at high signal-to-noise ratios. We find that this is not the case for the multiuser interference channel mentioned above. For useful error rates, we find that soft-decision CC's to be uniformly better than RS codes when used with DS-COMA modulation in multiuser space-time channels. In our development, we use the Gaussian approximation on the interference to determine performance error bounds for systems with low number of users. Then, we check their accuracy in error rate estimation via system's simulation. These performance bounds will in turn allow us to consider a large number of users where we can estimate the gain in user-capacity due to channel coding. Lastly, the use of turbo codes is considered where it is shown that they offer a coding gain of 2.5 dB relative to soft-decision CC.

Sufficient Conditions for the Existence of an (n, 1) Mother Code and Its Puncturing Pattern to Generating a Given Convolutional Code (임의의 생성다항식 행렬을 갖는 길쌈부호도 (n, 1) 마더부호의 천공으로 생성 가능한가?)

  • Chung, Habong;Seong, Jinwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.4
    • /
    • pp.379-386
    • /
    • 2016
  • Puncturing is the most common way of increasing the rate of convolutional codes. The puncturing process is done to the original code called the mother code by a specific puncturing pattern. In this article, we investigate into the question whether any convolutional code is obtainable by puncturing some (n, 1) mother codes. We present two sufficient conditions for the mother code and the puncturing pattern to satisfy in order that the punctured code is equivalent to the given (N, K) convolutional code.

MATE: Memory- and Retraining-Free Error Correction for Convolutional Neural Network Weights

  • Jang, Myeungjae;Hong, Jeongkyu
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.1
    • /
    • pp.22-28
    • /
    • 2021
  • Convolutional neural networks (CNNs) are one of the most frequently used artificial intelligence techniques. Among CNN-based applications, small and timing-sensitive applications have emerged, which must be reliable to prevent severe accidents. However, as the small and timing-sensitive systems do not have sufficient system resources, they do not possess proper error protection schemes. In this paper, we propose MATE, which is a low-cost CNN weight error correction technique. Based on the observation that all mantissa bits are not closely related to the accuracy, MATE replaces some mantissa bits in the weight with error correction codes. Therefore, MATE can provide high data protection without requiring additional memory space or modifying the memory architecture. The experimental results demonstrate that MATE retains nearly the same accuracy as the ideal error-free case on erroneous DRAM and has approximately 60% accuracy, even with extremely high bit error rates.

Performance of Concatenated Reed-Solomon and Convolutional Codes for Digital Modems in HF Data Communications (HF 데이터 통신에서 디지털 모뎀을 위한 RS 및 컨볼루션 부호의 연접 부호 성능)

  • Kim, Jeong-Chang;Yang, Gyu-Sik;Jeong, Gi-Ryong;Park, Dong-Kook;Jung, Sung-Hun
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.190-196
    • /
    • 2012
  • In this paper, we propose an improved error correction code in order to improve the performance of digital modems for HF data communications and verify the performance of the proposed scheme. The proposed scheme employs outer Reed-Solomon codes concatenated with inner convolutional codes. Numerical results show that the proposed system significantly improves the bit error rate performance compared to the conventional PACTOR-III modems. Hence, the proposed system can improve the bandwidth efficiency of digital modems for HF data communications.

Packet Error Probability of CDMA Packet Radio System with Puctured Convolutional Codes (Punctured 콘볼루션 코드 방식을 이용한 코드분할 다중통신에서 패킷 에러 확률)

  • 박형래;정호영;강창언
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.3 no.2
    • /
    • pp.22-29
    • /
    • 1992
  • In recent years there has been increased interest in a class of multiple-access techniques known as code division multiple-access(CDMA). As the trend for ever increasing data transmission rate and high error performance continues while conserving bandwidth, the needs arise for good highrate R=b/v convolu- tional codes such as punctured codes. In this paper, the packet error propability has been analyzed in code division multiple-access packet radio system which utilize punctured convolutional code and hard-decision Viterbi decoding.

  • PDF

Design of RCNC(Random Connection Node Convolutional) Code with Security Property (비화 특성을 가진 RCNC(Random Connection Node Convolutional) 부호 기법의 설계)

  • Kong, Hyung-Yun;Cho, Sang-Bock;Lee, Chang-Hee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.12
    • /
    • pp.3944-3951
    • /
    • 2000
  • In this paper, we propose the new FEC(Forward Error Correction) code method, so called RCNC(Random Connection Node Convolutional) code with security property. Recently, many wireless communication systems, which can prouide integrated semices of various media types and hil rales, are required to haue the ability of secreting information and error correclion. This code system is a kind qf conuolulional code, but it Ius various code formats as each node is connected differently. And systems hy using RCNC codes haue all. ability of error correction as well as information protection. We describe the principle of operating RCNC codes, including operation examples. In this paper, we also show the peiformance of BER(Bit Error Rate) and verify authority of network system with computer simulation.

  • PDF

On the Existence of the (2,1) Mother Code of (n,n-1) Convolutional Code ((n,n-1) 길쌈부호에 대한 (2,1) 마더부호의 존재)

  • Jang, Hwan-Seok;Chung, Ha-Bong;Seong, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.4
    • /
    • pp.165-171
    • /
    • 2014
  • The rate of the channel code can be controlled by various methods. Puncturing is one of the methods of increasing the code rate, and the original code before puncturing is called the mother code. Any (n,k) convolutional code is obtainable by puncturing some mother codes, and the process of finding the mother code is necessary for designing the optimum channel decoder. In this paper, we proved that any (n,n-1) convolutional code has (2,1) mother codes regardless of the puncturing pattern and showed that they must be equivalent.

A Channel Coding of Variable Rate with Interleaver Punctured Serially Concatenated Convolutional Codes (IP-SCCC에 의한 가변 부호율의 채널 부호화)

  • 이연문;조경식;정차근
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.17-20
    • /
    • 2000
  • This paper addresses a novel algorithm for variable rate channel coding with interleaver punctured convolutional code for wireless communication. In other to increase the coding performance and achieve the variable channel coding rate, serially concatenated convolutional coding scheme will be applied. In this paper, we characterize the effect of interleaver puncturing on the effectiveness of the proposed scheme some simulation results are presented, in which the channel model of additive Gaussian noise is assumed.

  • PDF

MSE of Dual-k Convolutional Codes for an AWGN Channel with Rayleigh Fading (Rayleigh Fading AWGN채널에 대한 Dual-K길쌈부호의 평균자승오차)

  • 문상재
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1986.04a
    • /
    • pp.1-3
    • /
    • 1986
  • We are concerned with transmitting numerical source data of {0, 1, 2, ..., 2k-1} through a channel coding system. The rate 1/v dual-k convolutional code with the orthogonal MFSK modulation and the Viterbl decoding is employed for the implementation of the channel coding system. The mean square error of the dual-k convolutional code is evaluated for the numerical source transmitted over an additive white Gaussian noise channel with Rayleigh fading.

  • PDF