• 제목/요약/키워드: convolution neural network

검색결과 458건 처리시간 0.024초

FFT 적용을 통한 Convolution 연산속도 향상에 관한 연구 (A Study on the Optimization of Convolution Operation Speed through FFT Algorithm)

  • 임수창;김종찬
    • 한국멀티미디어학회논문지
    • /
    • 제24권11호
    • /
    • pp.1552-1559
    • /
    • 2021
  • Convolution neural networks (CNNs) show notable performance in image processing and are used as representative core models. CNNs extract and learn features from large amounts of train dataset. In general, it has a structure in which a convolution layer and a fully connected layer are stacked. The core of CNN is the convolution layer. The size of the kernel used for feature extraction and the number that affect the depth of the feature map determine the amount of weight parameters of the CNN that can be learned. These parameters are the main causes of increasing the computational complexity and memory usage of the entire neural network. The most computationally expensive components in CNNs are fully connected and spatial convolution computations. In this paper, we propose a Fourier Convolution Neural Network that performs the operation of the convolution layer in the Fourier domain. We work on modifying and improving the amount of computation by applying the fast fourier transform method. Using the MNIST dataset, the performance was similar to that of the general CNN in terms of accuracy. In terms of operation speed, 7.2% faster operation speed was achieved. An average of 19% faster speed was achieved in experiments using 1024x1024 images and various sizes of kernels.

A Proposal of Shuffle Graph Convolutional Network for Skeleton-based Action Recognition

  • Jang, Sungjun;Bae, Han Byeol;Lee, HeanSung;Lee, Sangyoun
    • 한국정보전자통신기술학회논문지
    • /
    • 제14권4호
    • /
    • pp.314-322
    • /
    • 2021
  • Skeleton-based action recognition has attracted considerable attention in human action recognition. Recent methods for skeleton-based action recognition employ spatiotemporal graph convolutional networks (GCNs) and have remarkable performance. However, most of them have heavy computational complexity for robust action recognition. To solve this problem, we propose a shuffle graph convolutional network (SGCN) which is a lightweight graph convolutional network using pointwise group convolution rather than pointwise convolution to reduce computational cost. Our SGCN is composed of spatial and temporal GCN. The spatial shuffle GCN contains pointwise group convolution and part shuffle module which enhances local and global information between correlated joints. In addition, the temporal shuffle GCN contains depthwise convolution to maintain a large receptive field. Our model achieves comparable performance with lowest computational cost and exceeds the performance of baseline at 0.3% and 1.2% on NTU RGB+D and NTU RGB+D 120 datasets, respectively.

Convolutional neural network를 이용한 눈동자 모션인식 시스템 구현 (Implementation to eye motion tracking system using convolutional neural network)

  • 이승준;허승원;이희빈;유윤섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.703-704
    • /
    • 2018
  • 본 논문은 몸을 움직이지 못하는 루게릭병 환자들을 위해 눈동자를 추적하여 의사소통 시스템에 필요한 눈동자의 위치를 파악해주는 인공신경망 설계에 대해 소개한다. Tensorflow를 이용해 신경망 생성 및 학습하고 학습된 신경망을 통하여 눈동자의 위치를 파악한다. 본 논문에서는 컨볼루션계층 2단계와 완전연결계층 2단계로 구성된 Convolution Neural Network(CNN)을 사용해서 구현했다.

  • PDF

GPGPU 기반 Convolutional Neural Network의 효율적인 스레드 할당 기법 (Efficient Thread Allocation Method of Convolutional Neural Network based on GPGPU)

  • 김민철;이광엽
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제7권10호
    • /
    • pp.935-943
    • /
    • 2017
  • 많은 양의 데이터 기반으로 학습하는 neural network 중 이미지 분류나 음성 인식 등에 사용되어 지고 있는 CNN(Convolution neural network)는 현재까지도 우수한 성능을 가진 구조로 계속적으로 발전되고 있다. 제한된 자원을 가진 임베디드 시스템에서 활용하기에는 많은 어려움이 있다. 그래서 미리 학습된 가중치를 사용하지만 여전히 한계점이 있기 때문에 이를 해결하기 위해 GPU의 범용 연산을 위해서 사용하는 GP-GPU(General-Purpose computing on Graphics Processing Units)를 활용하는 추세다. CNN은 단순하고 반복적인 연산을 수행하기 때문에 SIMT(Single Instruction Multiple Thread)기반의 GPGPU에서 스레드 할당과 활용 방법에 따라 연산 속도가 많이 달라진다. 스레드로 Convolution 연산과 Pooling 연산을 수행할 때 쉬어야 하는 스레드가 발생하는 데 이러한 문제를 해결하기 위해 남은 스레드가 다음 피쳐맵과 커널 계산에 활용되는 방법을 사용함으로써 연산 속도를 증가시켰다.

가중치 손실 함수를 가지는 순환 컨볼루션 신경망 기반 주가 예측 (A Stock Price Prediction Based on Recurrent Convolution Neural Network with Weighted Loss Function)

  • 김현진;정연승
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권3호
    • /
    • pp.123-128
    • /
    • 2019
  • 본 논문에서는 RCNN (recurrent convolution neural network) 계층 모델을 채택한 인공 지능에 기반을 둔 주가 예측을 제안한다. LSTM (long-term memory model) 기반 신경망은 시계열 데이터의 예측에 사용된다. 다른 한편, 컨볼루션 신경망은 데이터 필터링, 평균화 및 데이터 확장을 제공한다. 제안된 주가 예측에서는 위에서 언급 한 장점들을 RCNN 모델에서 결합하여 적용함으로써 다음날의 주가 종가를 예측한다. 그리고 최근의 시계열의 데이터를 강조하기 위해 커스텀 가중치 손실 함수가 채택되었다. 또한 시장의 상황을 반영하기 위해 주가 인덱스에 관련된 데이터를 입력으로 포함하였다. 제안된 주가 예측 방식은 실제 주가를 대상으로 한 실험에서 3.19%로 테스트 오차를 줄였으며, 다른 방법보다 약 19%의 성능 향상을 거둘 수 있었다.

Layout Optimization Method of Railway Transportation Route Based on Deep Convolution Neural Network

  • Cong, Qiao;Qifeng, Gao;Huayan, Xing
    • Journal of Information Processing Systems
    • /
    • 제19권1호
    • /
    • pp.46-54
    • /
    • 2023
  • To improve the railway transportation capacity and maximize the benefits of railway transportation, a method for layout optimization of railway transportation route based on deep convolution neural network is proposed in this study. Considering the transportation cost of railway transportation and other factors, the layout model of railway transportation route is constructed. Based on improved ant colony algorithm, the layout model of railway transportation route was optimized, and multiple candidate railway transportation routes were output. Taking into account external information such as regional information, weather conditions and actual information of railway transportation routes, optimization of the candidate railway transportation routes obtained by the improved ant colony algorithm was performed based on deep convolution neural network, and the optimal railway transportation routes were output, and finally layout optimization of railway transportation routes was realized. The experimental results show that the proposed method can obtain the optimal railway transportation route, the shortest transportation length, and the least transportation time, maximizing the interests of railway transportation enterprises.

합성곱신경망을 이용한 SAP 잡음 제거 후처리 알고리즘 (Post Processing Noise Reduction Algorithm of SAP Using Convolution Neural Network)

  • 김동형
    • 디지털산업정보학회논문지
    • /
    • 제19권2호
    • /
    • pp.57-68
    • /
    • 2023
  • Because salt and pepper noise is a type of impulse, even a small amount of noise could cause a large image degradation. In this paper, we proposed a salt-and-pepper noise removal method using the convolutional neural network. It consists of four phases. In the first step, the proposed method reconstructs noisy image using a traditional salt-and-pepper noise reduction method, and in the second step, the result image of previous step is filtered with Gaussian low pass filter. After that, we reconstruct the filtered image using convolution neural network. In the last step, the pixels with salt-and-pepper noise are replaced with the result of previous phase. Simulation results show that the proposed method yields not only objective image qualities(PSNR, SSIM) but also subjective image qualities for all SAP noise ratios.

시공간 템플릿과 컨볼루션 신경망을 사용한 깊이 영상 기반의 사람 행동 인식 (Depth Image-Based Human Action Recognition Using Convolution Neural Network and Spatio-Temporal Templates)

  • 음혁민;윤창용
    • 전기학회논문지
    • /
    • 제65권10호
    • /
    • pp.1731-1737
    • /
    • 2016
  • In this paper, a method is proposed to recognize human actions as nonverbal expression; the proposed method is composed of two steps which are action representation and action recognition. First, MHI(Motion History Image) is used in the action representation step. This method includes segmentation based on depth information and generates spatio-temporal templates to describe actions. Second, CNN(Convolution Neural Network) which includes feature extraction and classification is employed in the action recognition step. It extracts convolution feature vectors and then uses a classifier to recognize actions. The recognition performance of the proposed method is demonstrated by comparing other action recognition methods in experimental results.

A Novel Face Recognition Algorithm based on the Deep Convolution Neural Network and Key Points Detection Jointed Local Binary Pattern Methodology

  • Huang, Wen-zhun;Zhang, Shan-wen
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.363-372
    • /
    • 2017
  • This paper presents a novel face recognition algorithm based on the deep convolution neural network and key point detection jointed local binary pattern methodology to enhance the accuracy of face recognition. We firstly propose the modified face key feature point location detection method to enhance the traditional localization algorithm to better pre-process the original face images. We put forward the grey information and the color information with combination of a composite model of local information. Then, we optimize the multi-layer network structure deep learning algorithm using the Fisher criterion as reference to adjust the network structure more accurately. Furthermore, we modify the local binary pattern texture description operator and combine it with the neural network to overcome drawbacks that deep neural network could not learn to face image and the local characteristics. Simulation results demonstrate that the proposed algorithm obtains stronger robustness and feasibility compared with the other state-of-the-art algorithms. The proposed algorithm also provides the novel paradigm for the application of deep learning in the field of face recognition which sets the milestone for further research.

Human Action Recognition Based on 3D Convolutional Neural Network from Hybrid Feature

  • Wu, Tingting;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제22권12호
    • /
    • pp.1457-1465
    • /
    • 2019
  • 3D convolution is to stack multiple consecutive frames to form a cube, and then apply the 3D convolution kernel in the cube. In this structure, each feature map of the convolutional layer is connected to multiple adjacent sequential frames in the previous layer, thus capturing the motion information. However, due to the changes of pedestrian posture, motion and position, the convolution at the same place is inappropriate, and when the 3D convolution kernel is convoluted in the time domain, only time domain features of three consecutive frames can be extracted, which is not a good enough to get action information. This paper proposes an action recognition method based on feature fusion of 3D convolutional neural network. Based on the VGG16 network model, sending a pre-acquired optical flow image for learning, then get the time domain features, and then the feature of the time domain is extracted from the features extracted by the 3D convolutional neural network. Finally, the behavior classification is done by the SVM classifier.