• Title/Summary/Keyword: convex structure

Search Result 179, Processing Time 0.024 seconds

Vibration Test of a Full-Scale Five-Story Structure with Viscoelastic Dampers: Damper Design and Test for Response (점탄성 감쇠기가 설치된 실물크기 5층 건물의 진동실험: 감쇠기의 설계 및 응답실험)

  • 민경원;이상현;김진구;이영철;이승준;김두훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.9-15
    • /
    • 2003
  • This paper presents a design procedure for viscoelastic dampers to be installed in a full-scale steel structure and observes their vibration control effect, based on the excitation method and the dynamic characteristics of the structure investigated in the companion paper, Additional damping ratios required to reduce the maximum displacement to a given level were obtained by convex model. The size of dampers was determined by observing the change in modal damping ratio due to the change in damper stiffness using the modal strain energy method, The effect of the supporting braces was also considered in the determination of the modal properties. Two viscoelastic dampers were installed at the first and second inter-stories, respectively and their response reduction is verified.

An Efficient Triangular Mesh Generation Algorithm using Domain-wise Hash Structure (영역기반 해쉬구조를 이용한 효율적 삼각형 자동 요소망 생성 알고리듬 개발)

  • Kim, Tae-Joo;Cho, Jin-Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.41-48
    • /
    • 2004
  • In this work, a domain-wise hash structure is developed for efficient data handling, and by using the developed domain-wise hash structure, an automatic triangular mesh generation algorithm is proposed. To generate the optimal nodal points and triangles efficiently, the advancing layer method and Delaunay triangulation method are utilized. To investigate the performance of the proposed algorithm, benchmarking tests are carried out for various models including convex, concave and complicated shapes through the developed object oriented C++ mesh generation code.

A Comparative Study on the Traditional Housings in Korea, China and Japan in Respect of Spatial Structure and Space Use (한.중.일 전통주거의 공간구조 및 공간이용 특성에 관한 비교연구 - 충효당, 4진 사합원, 니노마루고덴 사례를 중심으로 -)

  • Kim, Min-Seok
    • Journal of the Korean housing association
    • /
    • v.22 no.2
    • /
    • pp.101-109
    • /
    • 2011
  • Until now, several comparative approaches were developed within the studies of Korean, Chinese, and Japanese traditional housings. In those studies, however, each space in the traditional houses was only treated in individual and fragmentary manners, and they lacked the interpretation of the topological attribute of each space within a holistic structure organized by unit spaces, and of the cultural-behavioral meaning of them within a holistic space-use pattern of the housing. The topological attribute and behavioral meaning can be analyzed and interpreted with the quantitative spatial analysis method such as Space Syntax. This study aims to analyze the traditional housings in Korea, China and Japan in the holistic aspect of spatial structure using Space Syntax, and to compare the analysis results with relating the structural attributes to the space-use pattern. In this study, the 'Banga' in Chosun era, the 'Siheyuan' in Ming-Ching era, and the 'Shoinzukuri' in Edo era were selected as the analysis subjects. The integration indices were calculated from the convex maps representing the subjects, and the common and different attributes of the three subjects were defined through comparative analyses.

A semi-analytical procedure for cross section effect on the buckling and dynamic stability of composite imperfect truncated conical microbeam

  • Zhang, Peng;Gao, Yanan;Moradi, Zohre;Ali, Yasar Ameer;Khadimallah, Mohamed Amine
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.371-388
    • /
    • 2022
  • The present study tackles the problem of forced vibration of imperfect axially functionally graded shell structure with truncated conical geometry. The linear and nonlinear large-deflection of the structure are considered in the mathematical formulation using von-Kármán models. Modified coupled stress method and principle of minimum virtual work are employed in the modeling to obtain the final governing equations. In addition, formulations of classical elasticity theory are also presented. Different functions, including the linear, convex, and exponential cross-section shapes, are considered in the grading material modeling along the thickness direction. The grading properties of the material are a direct result of the porosity change in the thickness direction. Vibration responses of the structure are calculated using the semi-analytical method of a couple of homotopy perturbation methods (HPM) and the generalized differential quadrature method (GDQM). Contradicting effects of small-scale, porosity, and volume fraction parameters on the nonlinear amplitude, frequency ratio, dynamic deflection, resonance frequency, and natural frequency are observed for shell structure under various boundary conditions.

Characteristics and prediction methods for tunnel deformations induced by excavations

  • Zheng, Gang;Du, Yiming;Cheng, Xuesong;Diao, Yu;Deng, Xu;Wang, Fanjun
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.361-397
    • /
    • 2017
  • The unloading effect from excavations can cause the deformation of adjacent tunnels, which may seriously influence the operation and safety of those tunnels. However, systematic studies of the deformation characteristics of tunnels located along side excavations are limited, and simplified methods to predict the influence of excavations on tunnels are also rare. In this study, the simulation capability of a finite element method (FEM) considering the small-strain characteristics of soil was verified using a case study. Then, a large number of FEM simulations examining the influence of excavations on adjacent tunnels were conducted. Based on the simulation results, the deformation characteristics of tunnels at different positions and under four deformation modes of the retaining structure were analyzed. The results indicate that the deformation mode of the retaining structure has a significant influence on the deformation of certain tunnels. When the deformation magnitudes of the retaining structures are the same, the influence degree of the excavation on the tunnel increased in this order: from cantilever type to convex type to composite type to kick-in type. In practical projects, the deformation mode of the retaining structure should be optimized according to the tunnel position, and kick-in deformation should be avoided. Furthermore, two methods to predict the influence of excavations on adjacent tunnels are proposed. Design charts, in terms of normalized tunnel deformation contours, can be used to quantitatively estimate the tunnel deformation. The design table of the excavation influence zones can be applied to determine which influence zone the tunnel is located in.

A study on the fine structure of marine diatoms in Korean coastal waters: Genus Thalassiosira 5

  • Park, Joon-Sang;Lee, Jin-Hwan
    • ALGAE
    • /
    • v.25 no.3
    • /
    • pp.121-131
    • /
    • 2010
  • Thalassiosira species were collected from October 2007 to January 2009 in an attempt to better understand species diversity of the genus Thalassiosira in Korean coastal waters. A total of 5 Thalassiosira species (T. concaviuscula, T. oceanica, T. partheneia, T. simonsenii and T. nanolineata) were identified here. Most species in this study were of small size, and 5 species were recorded for the first time in Korean coastal waters. Using a scanning electron microscope (SEM), we described distinctive characteristics of fine structure that proved to be important diagnostic characteristics for the identification of each species. The most important diagnostic characteristics for Thalassiosira species identification were the marginal strutted processes, the position of labiate processes, and the areolation. The differential characteristics of the species studied were: T. concaviuscula has a double layered external tubes on the marginal strutted processes; T. oceanica shows marginal ridges that are interlinked between the marginal strutted processes; the valve face of T. partheneia is fairly convex and its labiate process is positioned midway between two strutted processes; T. simonsenii is characterized by two labiate processes and somewhat coarse areolae; and, T. nanolineata has several central strutted processes and linear areolation.

Deformation of Non-linear Dispersive Wave over the Submerged Structure (해저구조물에 대한 비선형분산파의 변형)

  • Park, D.J.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.75-86
    • /
    • 1998
  • To design a coastal structure in the nearshore region, engineers must have means to estimate wave climate. Waves, approaching the surf zone from offshore, experience changes caused by combined effects of bathymetric variations, interference of man-made structure, and nonlinear interactions among wave trains. This paper has attempted to find out the effects of two of the more subtle phenomena involving nonlinear shallow water waves, amplitude dispersion and secondary wave generation. Boussinesq-type equations can be used to model the nonlinear transformation of surface waves in shallow water due to effect of shoaling, refraction, diffraction, and reflection. In this paper, generalized Boussinesq equations under the complex bottom condition is derived using the depth averaged velocity with the series expansion of the velocity potential as a product of powers of the depth of flow. A time stepping finite difference method is used to solve the derived equation. Numerical results are compared to hydraulic model results. The result with the non-linear dispersive wave equation can describe an interesting transformation a sinusoidal wave to one with a cnoidal aspect of a rapid degradation into modulated high frequency waves and transient secondary waves in an intermediate region. The amplitude dispersion of the primary wave crest results in a convex wave front after passing through the shoal and the secondary waves generated by the shoal diffracted in a radial manner into surrounding waters.

  • PDF

Relationships Between Corporate Social Responsibility, Firm Value, and Institutional Ownership: Evidence from Indonesia

  • HERMEINDITO, Hermeindito
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.5
    • /
    • pp.365-376
    • /
    • 2022
  • This study aims to look into the causal relationships between corporate social responsibility and firm value, corporate social responsibility and institutional ownership, and firm value and institutional ownership. This study develops a triangle model of causal relationships among the three endogenous variables. Samples for this study are manufacturing companies listed on the Indonesia Stock Exchange for the period 2014-2018. The model is operated in the system of simultaneous equation models using the generalized method of moments technique to estimate parameter coefficients. After controlling the effects of trade-off/balancing capital structure and managerial ownership, the research findings show a positive causal relationship between CSR and firm value and firm value and institutional ownership. Institutional ownership has a positive effect on CSR, while the effect of CSR on institutional ownership is negative in the firms without managerial ownership and positive in the firms with managerial ownership. This study finds that the causal relationship between CSR and firm value is stronger after the trade-off/balancing of capital structure is included in the model. Capital structure has a convex effect on firm value and positively impacts institutional ownership. In addition, an independent commissioner has a negative impact on CSR but has no direct impact on firm value.

A Study on The Improvement of Douglas-Peucker's Polyline Simplification Algorithm (Douglas-Peucker 단순화 알고리듬 개선에 관한 연구)

  • 황철수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.2
    • /
    • pp.117-128
    • /
    • 1999
  • A Simple tree-structured line simplification method, which exactly follows the Douglas-Peucker algorithm, has a strength for its simplification index to be involved into the hierarchical data structures. However, the hierarchy of simplification index, which is the core in a simple tree method, may not be always guaranteed. It is validated that the local property of line features in such global approaches as Douglas-Peucker algorithm is apt to be neglected and the construction of hierarchy with no thought of locality may entangle the hierarchy. This study designed a new approach, CALS(Convex hull Applied Line Simplification), a) to search critical points of line feature with convex hull search technique, b) to construct the hierarchical data structure based on these critical points, c) to simplify the line feature using multiple trees. CALS improved the spatial accuracy as compared with a simple tree method. Especially CALS was excellent in case of line features having the great extent of sinuosity.

  • PDF

A Study of Short-Term Load Forecasting System Using Data Mining (데이터 마이닝을 이용한 단기 부하 예측 시스템 연구)

  • Joo, Young-Hoon;Jung, Keun-Ho;Kim, Do-Wan;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.130-135
    • /
    • 2004
  • This paper presents a new design methods of the short-term load forecasting system (STLFS) using the data mining. The structure of the proposed STLFS is divided into two parts: the Takagi-Sugeno (T-S) fuzzy model-based classifier and predictor The proposed classifier is composed of the Gaussian fuzzy sets in the premise part and the linearized Bayesian classifier in the consequent part. The related parameters of the classifier are easily obtained from the statistic information of the training set. The proposed predictor takes form of the convex combination of the linear time series predictors for each inputs. The problem of estimating the consequent parameters is formulated by the convex optimization problem, which is to minimize the norm distance between the real load and the output of the linear time series estimator. The problem of estimating the premise parameters is to find the parameter value minimizing the error between the real load and the overall output. Finally, to show the feasibility of the proposed method, this paper provides the short-term load forecasting example.