• 제목/요약/키워드: convex hull algorithm

검색결과 75건 처리시간 0.025초

Face Detection Algorithm using Color and Convex-Hull Based Region Information

  • Park, Minsick;Park, Chang-Woo;Park, Mignon
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(3)
    • /
    • pp.217-220
    • /
    • 2001
  • The detection of face in color images is important for many multimedia applications. It is the first step for face recognition and ran be used for classifying specific shots. In this paper describes a new method to detect faces in color images based on the skin color and hair color. In the first step of the processing, regions of the human skin color and head color are extracted and those regions are found by their color information. Then we converted binary scale from the image. Then we are connected regions in a binary image by label. In the next step we are found regions of interesting by their region information and some conditions.

  • PDF

Cable layout design of two way prestressed concrete slabs using FEM

  • Khan, Ahmad Ali;Pathak, K.K.;Dindorkar, N.
    • Computers and Concrete
    • /
    • 제11권1호
    • /
    • pp.75-91
    • /
    • 2013
  • In this paper, a new approach for cable layout design of pre-stressed concrete slabs is presented. To account the cable profile accurately, it is modelled by B-spline. Using the convex hull property of the B-spline, an efficient algorithm has been developed to obtain the cable layout for pre-stressed concrete slabs. For finite element computations, tendon and concrete are modelled by 3 noded bar and 20 noded brick elements respectively. The cable concrete interactions are precisely accounted using vector calculus formulae. Using the proposed technique a two way prestressed concrete slab has been successfully designed considering several design criteria.

Extraction of Sizes and Velocities of Spray Droplets by Optical Imaging Method

  • Choo, Yeonjun;Kang, Boseon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권7호
    • /
    • pp.1236-1245
    • /
    • 2004
  • In this study, an optical imaging method was developed for the measurements of the sizes and velocities of droplets in sprays. Double-exposure single-frame spray images were captured by the imaging system. An image processing program was developed for the measurements of the sizes and positions of individual particles including separation of the overlapped particles and particle tracking and pairing at two time instants. To recognize and separate overlapping particles, the morphological method based on watershed segmentation as well as separation using the perimeter and convex hull of image was used consecutively. Better results in separation were obtained by utilization of both methods especially for the multiple or heavily-overlapped particles. The match probability method was adopted for particle tracking and pairing after identifying the positions of individual particles and it produced good matching results even for large particles like droplets in sprays. Therefore, the developed optical imaging method could provide a reliable way of analyzing the motion and size distribution of droplets produced by various sprays and atomization devices.

SLAM 기술을 활용한 저가형 자율주행 배달 로봇 시스템 개발 (Development of Low Cost Autonomous-Driving Delivery Robot System Using SLAM Technology)

  • 이동훈;박제현;정경훈
    • 대한임베디드공학회논문지
    • /
    • 제18권5호
    • /
    • pp.249-257
    • /
    • 2023
  • This paper discusses the increasing need for autonomous delivery robots due to the current growth in the delivery market, rising delivery fees, high costs of hiring delivery personnel, and the need for contactless services. Additionally, the cost of hardware and complex software systems required to build and operate autonomous delivery robots is high. To provide a low-cost alternative to this, this paper proposes a autonomous delivery robot platform using a low-cost sensor combination of 2D LIDAR, depth camera and tracking camera to replace the existing expensive 3D LIDAR. The proposed robot was developed using the RTAB-Map SLAM open source package for 2D mapping and overcomes the limitations of low-cost sensors by using the convex hull algorithm. The paper details the hardware and software configuration of the robot and presents the results of driving experiments. The proposed platform has significant potential for various industries, including the delivery and other industries.

A method for image-based shadow interaction with virtual objects

  • Ha, Hyunwoo;Ko, Kwanghee
    • Journal of Computational Design and Engineering
    • /
    • 제2권1호
    • /
    • pp.26-37
    • /
    • 2015
  • A lot of researchers have been investigating interactive portable projection systems such as a mini-projector. In addition, in exhibition halls and museums, there is a trend toward using interactive projection systems to make viewing more exciting and impressive. They can also be applied in the field of art, for example, in creating shadow plays. The key idea of the interactive portable projection systems is to recognize the user's gesture in real-time. In this paper, a vision-based shadow gesture recognition method is proposed for interactive projection systems. The gesture recognition method is based on the screen image obtained by a single web camera. The method separates only the shadow area by combining the binary image with an input image using a learning algorithm that isolates the background from the input image. The region of interest is recognized with labeling the shadow of separated regions, and then hand shadows are isolated using the defect, convex hull, and moment of each region. To distinguish hand gestures, Hu's invariant moment method is used. An optical flow algorithm is used for tracking the fingertip. Using this method, a few interactive applications are developed, which are presented in this paper.

이종의 공간 데이터 셋의 면 객체 자동 매칭 방법 (Automated Areal Feature Matching in Different Spatial Data-sets)

  • 김지영;이재빈
    • 대한공간정보학회지
    • /
    • 제24권1호
    • /
    • pp.89-98
    • /
    • 2016
  • 본 연구에서는 축척과 갱신 주기가 상이한 이종의 공간 데이터 셋을 융합하기 위하여 사용자의 개입을 최소화하면서 다대다 관계에도 적용이 가능한 기하학적 방법론 기반의 면 객체 자동 매칭 방법을 제안하였다. 이를 위하여 첫째, 포함함수가 0.4 이상인 객체(노드)는 인접행렬에서 에지로 연결되었고, 이들 인접행렬의 곱을 반복적으로 수행하여 다대다 관계를 포함하는 후보 매칭 쌍을 선정하였다. 다대다 관계인 면 객체들은 알고리즘으로 생성된 convex hull로 단일 면 객체로 변환하였다. 기하학적 매칭을 위하여, 매칭 기준을 설정하고, 이들을 유사도 함수를 이용하여 유사도를 계산하였다. 다음으로 변환된 유사도와 CRITIC 방법으로 도출된 가중치를 선형 조합하여 형상 유사도를 계산하였다. 마지막으로 훈련자료에서 모든 가중치에 대한 정확도와 재현율을 나타낸 PR 곡선의 교차점인 EER로 임계값을 선정하고, 이 임계값을 기준으로 매칭 유무를 판별하였다. 제안된 방법을 수치지도와 도로명 주소기본도에 적용한 결과, 일부 다대다 관계에서 잘못 매칭되는 경우를 시각적으로 확인할 수 있었으나, 통계적 평가에서 정확도, 재현율, F-measure가 각각 0.951, 0.906, 0.928로 높게 나타났다. 이는 제안된 방법으로 이종의 공간 데이터 셋을 자동으로 매칭하는데 그 정확도가 높음을 의미한다. 그러나 일부 오류가 발생한 다대다 관계인 후보 매칭 쌍을 정확하게 정량화하기 위해서 포함함수나 매칭 기준에 대한 연구가 진행되어야 할 것이다.

깊이 영상 기반 손 영역 추적 및 손 끝점 검출 (Hand Region Tracking and Fingertip Detection based on Depth Image)

  • 주성일;원선희;최형일
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권8호
    • /
    • pp.65-75
    • /
    • 2013
  • 본 논문에서는 깊이 영상만을 이용하여 손 영역 추적 및 손 끝점 검출 방법을 제안한다. 조명 조건의 영향을 제거하고 빠르고 안정적인 정보 획득을 위해 깊이 정보만을 이용하는 추적 방법을 제안하고, 영역 확장 방법을 통해 추적 과정 중에 발생할 수 있는 오류에 대한 판단 방법과 다양한 제스처 인식에 응용이 가능한 손 끝점 검출 방법을 제안한다. 먼저 추적점을 찾기 위해 중심점 전이 과정을 통해 최근접점을 찾고 그 점으로부터 영역 확장을 통해 손 영역과 경계선을 검출한다. 그리고 영역 확장을 통해 획득한 무효경계선의 비율을 이용하여 추적영역에 대한 신뢰도를 계산함으로써 정상 추적 여부를 판단한다. 정상적인 추적인 경우, 검출된 손 영역으로부터 윤곽선을 추출하고 곡률 및 RANSAC, 컨벡스 헐(Convex-Hull)을 이용하여 손 끝점을 검출한다. 마지막으로 성능 검증을 위해 다양한 상황에 따른 정량적, 정성적 분석을 통해 제안하는 추적 및 손 끝점 검출 알고리즘의 효율성을 입증한다.

복잡한 2차원 물체 인식용 로봇 시각장치의 구현에 관한 연구 (A Study on Implementation of a Robot Vision System for Recogniton of complex 2-D Objects)

  • 김호성;김영석;변증남
    • 대한전자공학회논문지
    • /
    • 제22권1호
    • /
    • pp.53-60
    • /
    • 1985
  • A computer vision system for robot is developed which can recognize a variety of two dimensional complex objects in gray level noisy scenes. the system is also capable of determining the position and orientation of the objects for robotlc manipulation. The hardware of the vision system is developed and a new edge tracking technique is also proposed. The linked edges are approximated to sample line drawing by split and merge algorithm. The system extracts many features from line drawing and constructs relational structure by the concave and convex hull of objects. In matching process, the input obhects are compared with the objects database which is formed by learning ability. Thelearning process is so simple that the system is very flexible. Several examples arc shown to demonstrate the usefulness of this system.

  • PDF

Development of a Dike Line Selection Method Using Multispectral Orthoimages and Topographic LiDAR Data Taken in the Nakdong River Basins

  • Choung, Yun Jae
    • 한국측량학회지
    • /
    • 제33권3호
    • /
    • pp.155-161
    • /
    • 2015
  • Dike lines are important features for describing the detailed shapes of dikes and for detecting topographic changes on dike surfaces. Historically, dike lines have been generated using only the LiDAR data. This paper proposes a new methodology for selecting an appropriate dike line on various dike surfaces using the topographic LiDAR data and multispectral orthoimages taken in the Nakdong River basins. The fi rst baselines were generated from the given LiDAR data using the modified convex hull algorithm and smoothing spline function, and the second baselines were generated from the given orthoimages by the Canny operator. Next, one baseline was selected among the two baselines at 10m intervals by comparing their elevations, and the selected baseline at 10m interval was defined as the dike line segment. Finally, the selected dike line segments were connected to construct the 3D dike lines. The statistical results show that the dike lines generated using both the LiDAR data and multispectral orthoimages had the improved horizontal and vertical accuracies than the dike lines generated only using the LiDAR data on the various dike surfaces.

A Border Line-Based Pruning Scheme for Shortest Path Computations

  • Park, Jin-Kyu;Moon, Dae-Jin;Hwang, Een-Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권5호
    • /
    • pp.939-955
    • /
    • 2010
  • With the progress of IT and mobile positioning technologies, various types of location-based services (LBS) have been proposed and implemented. Finding a shortest path between two nodes is one of the most fundamental tasks in many LBS related applications. So far, there have been many research efforts on the shortest path finding problem. For instance, $A^*$ algorithm estimates neighboring nodes using a heuristic function and selects minimum cost node as the closest one to the destination. Pruning method, which is known to outperform the A* algorithm, improves its routing performance by avoiding unnecessary exploration in the search space. For pruning, shortest paths for all node pairs in a map need to be pre-computed, from which a shortest path container is generated for each edge. The container for an edge consists of all the destination nodes whose shortest path passes through the edge and possibly some unnecessary nodes. These containers are used during routing to prune unnecessary node visits. However, this method shows poor performance as the number of unnecessary nodes included in the container increases. In this paper, we focus on this problem and propose a new border line-based pruning scheme for path routing which can reduce the number of unnecessary node visits significantly. Through extensive experiments on randomly-generated, various complexity of maps, we empirically find out optimal number of border lines for clipping containers and compare its performance with other methods.