In this paper, we introduce the concepts of the convexity hull and co-convex sets on preconvexity spaces. We study some properties for the co-convexity hull and characterize c-convex functions and c-concave functions by using the co-convexity hull and the convexity hull.
x본 논문에서는 키넥트(Kinect) 시스템에서 획득한 깊이 영상으로부터 convex-hull을 이용한 기하학적 특징 기반의 손 모양 인식 기법을 제안한다. 키넥트 시스템은 깊이 영상과 사용자의 골격 정보를 제공하는 카메라로 손 영역 검출에 유용하게 활용할 수 있다. 제안하는 기법에서는 키넥트로 획득한 깊이 영상에서 손 영역을 검출하고, 이 손 영역의 convex-hull을 구한다. 손 모양에 따라서 변하는 convex-hull에서 잡음으로 생긴 경계점 및 인식에 불필요한 경계점을 일련의 기법을 통해 제거한다. 추려진 경계점을 통해 재구성된 convex-hull을 특정 다각형으로 판단하고, 이 다각형의 내각의 합을 이용하여 손 모양을 인식하게 된다. 실험을 통해 제안하는 기법이 인식하고자 하는 모델에 대하여 높은 인식률을 보여준다는 것을 확인하였고, 단순히 특정 방향으로 고정된 손 모양뿐만 아니라 같은 모양이나 방향이 틀어진 손 모양에 대해서도 우수한 인식 성능을 확인하였다.
Communications for Statistical Applications and Methods
/
제25권1호
/
pp.79-89
/
2018
In this paper, we study the maximal property of the volume of the convex hull of d-dimensional independent random vectors. We show that the volume of the random convex hull from a multivariate location-scale family indexed by ${\Sigma}$ is stochastically maximized in simple stochastic order when ${\Sigma}$ is diagonal. The claim can be applied to a broad class of multivariate distributions that include skewed/unskewed multivariate t-distributions. We numerically investigate the proven stochastic relationship between the dependent and independent random convex hulls with the Gaussian random convex hull. The numerical results confirm our theoretical findings and the maximal property of the volume of the independent random convex hull.
SPH(Smoothed Particle Hydrodynamics) is a gridless Lagrangian technique that is useful as an alternative numerical analysis method used to analyze high deformation problems as well as astrophysical and cosmological problems. In SPH, all points within the support of the kernel are taken as neighbours. The accuracy of the SHP is highly influenced by the method for choosing neighbours from all particle points considered. Typically a linked-list method or tree search method has been used as an effective tool because of its conceptual simplicity, but these methods have some liability in anisotropy situations. In this study, convex hull algorithm is presented as an improved method to eliminate this artifact. A convex hull is the smallest convex set that contains a certain set of points or a polygon. The selected candidate neighbours set are mapped into the new space by an inverse square mapping, and extract a convex hull. The neighbours are selected from the shell of the convex hull. These algorithms are proved by Fortran programs. The programs are expected to use as a searching algorithm in the future SPH program.
Journal of Electrical Engineering and information Science
/
제3권3호
/
pp.281-285
/
1998
Consider the two-dimensional sorted-set convex hull problem: Given N points in a plane sorted by the x coordinates, compute the convex hull of the points. We propose an O(logNlog logN)-time algorithm that solves the sorted-set convex hull problem on an N\ulcorner\ulcorner${\times}$N\ulcorner\ulcorner reconfigurable mesh. The best known algorithm for the problem on an N\ulcorner\ulcorner${\times}$N\ulcorner\ulcorner reconfigurable mesh takes O(log\ulcornerN) time. Although there is a constant-time algorithm on an N${\times}$N reconfigurable mesh for general two-dimensional convex hull problem, the general convex hull problem requires Θ(N\ulcorner\ulcorner) time on an N\ulcorner\ulcorner${\times}$N\ulcorner\ulcorner reconfigurable mesh due to bandwidth constraints.
현재까지 컨벡스헐 (convex hull) 의 계산 알고리즘들은 주로 점 집합 (point set) 에 대해 연구가 수행되어 왔다. 본 논문에서는 이산 공간에서 다양한 반경을 갖는 구 집합에 대한 컨벡스헐을 근사하는 방법을 제시한다. 구 집합에 대한 컨벡스헐 계산은, 특히 단백질 분자의 구조적인 특성을 연구하는 여러 응용분야에서 계산 효율성을 증대시키기 위한 기반 기술이라 할 수 있다. 분자에 대응하는 구의 집합에 대해 복셀 맵 (voxel map) 자료구조를 적용하고 이를 이용하여 컨벡스헐을 계산하는 알고리즘을 제시한다. 제안된 방법은 GPU를 활용한 병렬처리를 수행하여 평균적으로 6,400개 이하의 구가 포함된 집합에 대해 40ms 이내에 컨벡스헐을 계산하는 성능을 보인다.
Given n points in the plane the planar convex hull prob-lem in that of finding which of these points belong to the perimeter of the smallest convex region (a polygon) containing all n points. Here we suggest two kinds of methods. First we present a new sequential method for constructing the pla-nar convex hull O(1.5n) time in the quadratic decision tree model. Second using the sequential method we suggest a new parallel algo-rithm which solve the planar convex hull O(1.5n/p) time on a maspar Machine (CREW-PRAM) with O(n) processors. Also when we run on a maspar Machine we achieved a 37. 156-fold speedup with 64 pro-cessor.
본 연구에서는 임의의 정렬되지 않은 점집합에서 정렬을 고려한 개선된 Convex Hull 알고리즘을 제안한다. 이 알고리즘은 Convex Hull의 극점 특성을 이용하여 처리 데이터를 한정하기 때문에 계산복잡도가 낮다. 각 단계마다 볼록 정점을 판별하는 조건을 이용하여 한 번의 스캔으로 완전한 Convex Set을 구한다. 알고리즘 초기에 점집합의 정렬이 필요한데, 이때 걸리는 시간이 알고리즘 전체 동작시간의 대부분을 차지하기 때문에 값과 인덱스를 대치하여 빠르게 정렬하였다. 일반적인 상황을 가정하여 랜덤한 점집합으로 알고리즘의 동작시간을 측정하였으며 기존의 알고리즘에 비해 약 두 배의 속도 향상이 있음을 확인하였다.
본 논문에서는 2 차원 패턴을 위한 볼록 헐(convex hull) 알고리즘을 제안한다. 알고리즘은 크게 후보 볼록점 추출과 최종 볼록점 추출의 두 단계로 나된다. 첫 번째 단계에서는 볼록 헐의 볼록점이 될 수 없는 점들을 최대한 간단한 연산을 사용하여 제거함으로써 속도의 향상을 기한다. 두 번째 단계에서는 첫 번째 단계에서 구해진 후보 볼록점을 대상으로 최종 볼록 헐을 구한다. 이 방법은 매우 간단한 연산으로 구성되어 있기 때문에 수행 속도면에서 향상을 가져왔다. 실험 결과, 본 논문의 방법이 기존에 사용되던 두 개의 볼록 헐 알고리즘보다 2배내지 3배의 빠른 수행 속도를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.