• Title/Summary/Keyword: converters

Search Result 1,810, Processing Time 0.021 seconds

Family of Isolated Zero Current Transition PWM Converters

  • Adib, Ehsan;Farzanehfard, Hosein
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.156-163
    • /
    • 2009
  • In this paper a family of zero current transition PWM converters which employs a simple auxiliary circuit is introduced. This soft switched auxiliary circuit is only composed of a switch and a capacitor. The proposed converters are analyzed and various operating modes of the ZCT flyback converter are discussed. Design considerations are presented and the experimental results of the ZCT flyback converter laboratory prototype are illustrated. The experimental results confirm the validity of theoretical analysis.

Zero voltage and zero current switched converters (영전압 영전류 스위칭 방식의 컨버터)

  • 정규범
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.120-124
    • /
    • 1998
  • In this paper, new zero voltage and zero current switched PWM(Pulse Width Modulated) converters are suggested. The main and auxiliary switch of the converters satisfy soft switching conditions, which are zero voltage or zero current switching of the switches. The switching characteristics of the proposed converters are experimentally verified by boost typed converter, which has 250 kHz switching frequency. For the 250 kHz operation, turn on period of auxiliary switch is about 1/40 for switching period of 4 ${\mu}\textrm{s}$. Therefore, the conduction loss of auxiliary switch is reduced.

  • PDF

Fault Detection And Isolation Of Two DC-DC Converters Parallel Operation By ZCT Method (ZCT방식을 이용한 두 개의 컨버터 병렬 운전 시고장 검출 및 분리)

  • 박상은
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.172-176
    • /
    • 2000
  • The paper presents the fault detection and isolation of two DC-DC converters parallel operation by ZCT method. Two experimental prototype converters were designed and implemented for evaluation of fault tolerant system. The experimental results show that fault detection and isolation circuit works very well.

  • PDF

Input Voltage Sharing Control for Input-Series-Output-Parallel DC-DC Converters without Input Voltage Sensors

  • Guo, Zhiqiang;Sha, Deshang;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.83-87
    • /
    • 2012
  • Input-series-output-parallel (ISOP) modular converters consisting of multiple modular DC/DC converters can enable low voltage rating switches for use in high voltage input applications. In this paper, an input voltage sharing control strategy for input-series-output-parallel (ISOP) full-bridge (FB) DC/DC converters is proposed. By sensing the difference in the input current of two modules, the system can achieve input voltage sharing for DC-DC modules. The effectiveness of the proposed control strategy is verified by simulation and experimental results obtained with a 200w-50kHz prototype.

Analysis and Modeling of Parallel Three-Phase Boost Converters Using Three-Phase Coupled Inductor

  • Lim, Chang-Soon;Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1086-1095
    • /
    • 2013
  • The main issue of parallel three-phase boost converters is reduction of the low- and high frequency circulating currents. Most present technologies concentrate on low frequency circulating current because the circulating current controller cannot mitigate the high frequency circulating current. In this paper, analytical approach of three-phase coupled inductor applied to parallel system becomes an important objective to effectively reduce the low- and high frequency circulating currents. The characteristics of three-phase coupled inductor based on a structure and voltage equations are mathematically derived. The modified voltage equations are then applied to parallel three-phase boost converters to develop averaged models in stationary coordinates and rotating coordinates. Based on the averaged modeling approach, design of the circulating current controller is presented. Simulation and experimental results demonstrate the effectiveness of the analysis and modeling for the parallel three-phase boost converters using three-phase coupled inductor.

A New Zero-Voltage-Switching PWM Converters with Zero-Current-Switched Auxiliary Switch (영전류 스위칭 방식의 보조스위치를 갖는 새로운 영전압 스위칭 방식의 PWM 컨버터)

  • 마근수;홍일희;김양모
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.12
    • /
    • pp.632-640
    • /
    • 2003
  • In conventional Zero-Voltage-Transition(ZVT) PWM converters, zero-voltage turn-on and turn-off for main switch without increasing voltage/current stresses is achieved at a fixed frequency. The switching loss, stress, and noise, however, can't be minimized because they adopt auxiliary switches turned off under hard-switching condition. In this paper, new ZVS-PWM converters of which both active and passive switches are always operating with soft-switching condition are proposed. Therefore, the proposed ZVS-PWM converters are most suitable for avionics applications requiring high-power density. Breadboarded ZVS-PWM boost converters using power MOSFET are constructed to verify theoretical analysis.

Simulation Analysis of Control Methods for Parallel Multi-Operating System constructed by the Same Output Power Converters

  • Ishikura, Keisuke;Inaba, Hiromi;Kishine, Keiji;Nakai, Mitsuki;Ito, Takuma
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.282-288
    • /
    • 2014
  • A large capacity power conversion system constructed by using two or more existing power converters has a lot of flexibility in how the power converters are used. However, at the same time, it has a problem of cross current flows between power converters. The cross current must be suppressed by controlling the system while miniaturizing the combination reactor. This paper focuses on two current control methods of a power conversion system constructed by using two power converters connected in parallel supplying the same power. In order to elucidate the control performance of cross current, each control method which are aimed at controlling cross current and not directly controlling it are examined in simulations.

Study on the Failure Protection Mechanism for the Low Voltage Converter Module of Power Control and Distribution Unit (전력조절분배기 저전압 컨버터 모듈의 고장 방지에 대한 연구)

  • Park, Sung-Woo;Park, Hee-Sung;Jang, Jin-Beak;Jang, Sung-Soo;Lee, Sang-Kon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.285-288
    • /
    • 2008
  • Even though many modular converters have several internal protection circuit blocks for various abnormal operation conditions, there are many failure cases on modular converters at real applications. In this paper, the control strategy for failure protection of converters with internal 'In-Hibit' function is investigated. As an example, for the MDl modular converters the in-hibit function application is realized and the test results shows that adopting in-hibit function while converter switching reduces the voltage and current stress. And the reduction of switching stress on converter will decrease failure rate on converters.

  • PDF

A study on comparison of efficiency characteristics for half bridge type DC-DC converters (하프브릿지형 DC-DC 컨버터의 효율특성 비교에 관한 연구)

  • Lee Kwang-Tek;Ahn Tae-Young;Kim Sung-Cheol;Ryu Byoung-Woo;Bong Sang-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.356-359
    • /
    • 2006
  • This paper presented the power losses comparison results with the Active clamp Forward, the Asymmetrical half bridge and the Two transistor forward converters. To estimate for conduction losses in the converters, the steady state analysis regard to parasitic resistance and current effective values for main parts of converters was derived. In addition, the theoretical efficiency for the converters with input voltage 400V, output voltage 12V and maximum power 480W was discussed.

  • PDF

Analysis for Light Load Regulation of LLC Converter using Bode Plot (보드 선도를 이용한 LLC 컨버터의 경 부하 레귤레이션 특징 분석)

  • Yeon, Cheol-O;Moon, Gun-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.506-513
    • /
    • 2016
  • In general, LLC converters show great promise in applications that require high efficiency, especially under light load conditions. In particular, LLC converters feature wide gain capability with pulse-frequency modulation and zero voltage switching over entire load conditions. However, output voltage increases in light load conditions. In this study, Bode plot and impedance asymptotes analyses were conducted to obtain insights into the regulation characteristics of LLC converters under light load conditions. To improve the regulation characteristic of LLC converters, a new resonant tank with an additional capacitor is proposed. The design guideline for the proposed LLC converter is determined by the Bode plot and impedance asymptotes analyses. Therefore, the proposed LLC converter achieves the light load regulation while maintaining the advantages of typical LLC converters.