• Title/Summary/Keyword: conversion logic

Search Result 111, Processing Time 0.022 seconds

XSLT document editing for XML document conversion in WYSIWYG environment (WYSIWYG 환경에서 XML 문서 변환을 위한 XSLT 문서편집 시스템)

  • 차원준;박주상;이용준;정회경
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.500-503
    • /
    • 2003
  • XML been using extensively by standard of data exchanging in the Internet is observed by a technology to replace existent document creation language of HTML etc. Biggest characteristic of this XML is that logic information and physical information that express style of document that do that express structural substance of document were detached. Hereupon, W3C advised XSL that oner style function of form similar to HTML for XML's style and data conversion. Also, XSL's conversion function offers function that change XML document to other data format, and can describe style information through conversion of various document format. But, a XML document conversion technology that use XSLT know-how in domestic is unprepared real condition, and necessity about solution that can edit XSLT document efficiently is putting. This paper does XML document so that conversion and output are available in various document format. And offered research of XSLT document editing system that can edit and create XSLT document efficiently under WYSIWYG environment.

  • PDF

A knowledge Conversion Tool for Expert Systems

  • Kim, Jin-S.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Most of expert systems use the text-oriented knowledge bases. However, knowledge management using the knowledge bases is considered as a huge burden to the knowledge workers because it includes some troublesome works. It includes chasing and/or checking activities on Consistency, Redundancy, Circulation, and Refinement of the knowledge. In those cases, we consider that they could reduce the burdens by using relational database management systems-based knowledge management infrastructure and convert the knowledge into one of easy forms human can understand. Furthermore they could concentrate on the knowledge itself with the support of the systems. To meet the expectations, in this study, we have tried to develop a general-purposed knowledge conversion tool for expert systems. Especially, this study is focused on the knowledge conversions among text-oriented knowledge base, relational database knowledge base, and decision tree.

Digital-Radio Conversion System using Vector Synthesis Method (벡터합성방법에 의한 디지털-무선 변환시스템)

  • Joo Chang Bok;Kim Sung Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.2
    • /
    • pp.131-137
    • /
    • 2000
  • In this paper, as a compatible software radio transmission system, Digital-Radio conversion system which can directly change the digital signal generated by the logic circuit into radio signal is proposed. By the vector synthesis method, the digital signals can change directly into radio signal. If such a circuit is realized, RF circuit and an antenna can be composed by the simple one device, and the radio is directly controlled and performed by the software processing which is the essence of software radio. This Digital-Radio conversion system of this paper give many number of communication channels being offered by PN code and offer a hardware design flexibility by digitization, therefore it decrease the percentage ratio of hardware of system and give a more flexible function of software basis. In this paper, the principle of digital to radio signal generation algorithm is explained and the performance characteristics of proposed algorithm is shown in time base by the computer simulation method.

  • PDF

A Study on the Information Reversibility of Quantum Logic Circuits (양자 논리회로의 정보 가역성에 대한 고찰)

  • Park, Dong-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.189-194
    • /
    • 2017
  • The reversibility of a quantum logic circuit can be realized when two reversible conditions of information reversible and energy reversible circuits are satisfied. In this paper, we have modeled the computation cycle required to recover the information reversibility from the multivalued quantum logic to the original state. For modeling, we used a function embedding method that uses a unitary switch as an arithmetic exponentiation switch. In the quantum logic circuit, if the adjoint gate pair is symmetric, the unitary switch function shows the balance function characteristic, and it takes 1 cycle operation to recover the original information reversibility. Conversely, if it is an asymmetric structure, it takes two cycle operations by the constant function. In this paper, we show that the problem of 2-cycle restoration according to the asymmetric structure when the hybrid MCT gate is realized with the ternary M-S gate can be solved by equivalent conversion of the asymmetric gate to the gate of the symmetric structure.

A 10-bit 10-MS/s 0.18-um CMOS Asynchronous SAR ADC with Time-domain Comparator (시간-도메인 비교기를 이용하는 10-bit 10-MS/s 0.18-um CMOS 비동기 축차근사형 아날로그-디지털 변환기)

  • Jeong, Yeon-Hom;Jang, Young-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.88-90
    • /
    • 2012
  • This paper describes a 10-bit 10-MS/s asynchronous successive approximation register (SAR) analog-to-digital converter (ADC) with a rail-to-rail input range. The proposed SAR ADC consists of a capacitor digital-analog converter (DAC), a SAR logic and a comparator. To reduce the frequency of an external clock, the internal clock which is asynchronously generated by the SAR logic and the comparator is used. The time-domain comparator with a offset calibration technique is used to achieve a high resolution. To reduce the power consumption and area, a split capacitor-based differential DAC is used. The designed asynchronous SAR ADC is fabricated by using a 0.18 um CMOS process, and the active area is $420{\times}140{\mu}m^2$. It consumes the power of 0.818 mW with a 1.8 V supply and the FoM is 91.8 fJ/conversion-step.

  • PDF

A New Flash A/D Converter Adopting Double Base Number System (2개의 밑수를 이용한 Flash A/D 변환기)

  • Kim, Jong-Soo;Kim, Man-Ho;Jang, Eun-Hwa
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.54-61
    • /
    • 2008
  • This paper presents a new TIQ based CMOS flash 6-bit ADC to process digital signal in real time. In order to improve the conversion speed of ADC by designing new logic or layout of ADC circuits, a new design method is proposed in encoding logic circuits. The proposed encoding circuits convert analog input into digitally encoded double base number system(DBNS), which uses two bases unlike the normal binary representation scheme. The DBNS adopts binary and ternary radix to enhance digital arithmetic processing capability. In the DBNS, the addition and multiplication can be processed with just shift operations only. Finding near canonical representation is the most important work in general DBNS. But the main disadvantage of DBNS representation in ADC is the fan-in problem. Thus, an equal distribution algorithm is developed to solve the fan-in problem after assignment the prime numbers first. The conversion speed of simulation result was 1.6 GSPS, at 1.8V power with the Magna $0.18{\mu}m$ CMOS process, and the maximum power consumption was 38.71mW.

  • PDF

A Study on the possibility of various Interpretation of Poetical Signification in Space Design - Focus on the Semantics generative conversion of construction Factors in Interior Design - (공간디자인에 있어 시적 의미작용에 대한 해석가능성 연구 - 실내디자인 구성요소의 의미 구성적 변환을 중심으로 -)

  • Kim, Eunl-Ji
    • Korean Institute of Interior Design Journal
    • /
    • v.18 no.5
    • /
    • pp.71-79
    • /
    • 2009
  • This research understands semantics-system in contemporary space design as a poetic form. It provides that the possibility of various interpretation of space and makes to escape from insipid formal logic of compulsion uniform meaning. In order to unfold this argument, poetic semantics system has to be revealed using conversion of articulation factors in text of space(semantics and syntax). First of all, after setting up the articulation system of space language, we have to understand the conversion of articulation factors that generate a new grammar breaking up the rule of old syntax. And the various expression of form in Contemporary Space design focuses on a poetic expression, that is, the abstraction system fused by space factors(conversion of articulation system). In this method of research to recognize the subject of space in architecture, the importance of interpretation has to be highlighted, as the importance of language is emphasized that intermediates between object and interpretation. The reason to recognize Contemporary space design as a text is that it is a gathering of symbol as a object of interpretation and a mediator. The important issue of this study is to research how and what to transmit by poetic semantics system in contemporary space design. It brings about a poetic problem what it intends to becomes(the problem of meaning operation) in a narrow sense and a interpretational problem what it intends to do(the problem of communication). When we define interpretation the technique of defining a text, it involves the premise of inevitableness of multiple understanding, or the possibility to Interpret variously. In the end the ambiguity of poetic language and the infinity of moaning process as the moaning expansion system in contemporary space design is the flexible measure to solve the self-criticism.

DEVELOPMENT OF A SUPERCRITICAL CO2 BRAYTON ENERGY CONVERSION SYSTEM COUPLED WITH A SODIUM COOLED FAST REACTOR

  • Cha, Jae-Eun;Lee, Tae-Ho;Eoh, Jae-Hyuk;Seong, Sung-Hwan;Kim, Seong-O;Kim, Dong-Eok;Kim, Moo-Hwan;Kim, Tae-Woo;Suh, Kyun-Yul
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1025-1044
    • /
    • 2009
  • Systematic research has been conducted by KAERI to develop a supercritical carbon dioxide Brayton cycle energy conversion system coupled with a sodium cooled fast reactor. For the development of the supercritical $CO_2$ Brayton cycle ECS, KAERI researched four major fields, separately. For the system development, computer codes were developed to design and analyze the supercritical $CO_2$ Brayton cycle ECS coupled with the KALIMER-600. Computer codes were developed to design and analyze the performance of the major components such as the turbomachinery and the high compactness PCHE heat exchanger. Three dimensional flow analysis was conducted to evaluate their performance. A new configuration for a PCHE heat exchanger was developed by using flow analysis, which showed a very small pressure loss compared with a previous PCHE while maintaining its heat transfer rate. Transient characteristics for the supercritical $CO_2$ Brayton cycle coupled with KALIMER-600 were also analyzed using the developed computer codes. A Na-$CO_2$ pressure boundary failure accident was analyzed with a computer code that included a developed model for the Na-$CO_2$ chemical reaction phenomena. The MMS-LMR code was developed to analyze the system transient and control logic. On the basis of the code, the system behavior was analyzed when a turbine load was changed. This paper contains the current research overview of the supercritical $CO_2$ Brayton cycle coupled to the KALIMER-600 as an alternative energy conversion system.

Adaptive self-structuring fuzzy controller of wind energy conversion systems (풍력 발전 계통의 자기 구조화 적응 퍼지 제어기 설계)

  • Park, Jang-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.151-157
    • /
    • 2013
  • This paper proposes an online adaptive fuzzy controller for a wind energy conversion system (WECS) that is intrinsically highly nonlinear plant. In real application, to obtain exact system parameters such as power coefficient, many measuring instruments and off-line implementations are required, which is very difficult to perform. This shortcoming can be avoided by introducing fuzzy system in the controller design in this paper. The proposed adaptive fuzzy control scheme using self-structuring algorithm requires no system parameters to meet control objectives. Even the structure of the fuzzy system is automatically grows on-line, which distinguishes our proposed algorithm over the previously proposed fuzzy control schemes. Combining derivative estimator for wind velocity, the whole closed-loop system is shown to be stable in the sense of Lyapunov.

A Study on the Design and Validation of Switching Control Law (전환제어법칙 설계 및 검증에 관한 연구)

  • Kim, Chong-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.54-60
    • /
    • 2011
  • The flight control law designed for prototype aircraft often leads to degraded stability and performance, although developed control law verify by non-real time simulation and pilot based evaluations. Therefore, the proper evaluation methods should be applied such that flight control law designed can be verified in real flight environment. The one proposed in this paper is IFS (In-Flight Simulator). Currently, this system has been implemented into the F-18 HARV (High Angle of Attack Research Vehicle), SU-27 and F-16 VISTA (Variable stability In flight Simulation Test Aircraft) programs. The IFS necessary switching control law such as fader logic and integrator stand-by mode to reduce abrupt transient and minimize the integrator effect for each flight control laws switching. This paper addresses the concept of switching mechanism with fader logic of "TFS (Transient Free Switch)" and stand-by mode of "feedback type" based on SSWM (Software Switching Mechanism). And the result of real-time pilot evaluation reveals that the aircraft is stable for inter-conversion of flight control laws and transient response is minimized.