• Title/Summary/Keyword: convergence properties

Search Result 1,908, Processing Time 0.025 seconds

The Effect of Structural Characteristics of Selected Wool Fabrics on Mechanical and Thermal Properties (직물의 구성인자가 보온성에 미치는 영향)

  • Jun, Byung-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.1
    • /
    • pp.5-11
    • /
    • 2006
  • This study was performed to determine the effect of structural characteristics of selected wool fabrics on mechanical and thermal properties. 52 wool fabrics, including 18 plain woven fabrics and 34 twill and satin woven fabrics were used as samples woven with various weft density for the study. Several physical characteristics such as mechanical properties, keeping warmth ratio of wool fabrics were measured. Data analyses including 1) analysis of tactile and thermal comfort sensation were performed. the following were obtained from the results: The main factors affecting keeping warmth ratio were thickness and bulk density. The keeping warmth ratio of samples increased with increasing thickness and decreasing bulk density of samples. In addition, coefficient of friction of the samples increased with keeping warmth ratio of samples. The above results show that wearing sensation and comfort properties of fabrics are changed depending on the end-use, and thus, above results can be used to manufacture of fabrics for specific end-use with high comfort properties.

  • PDF

Dielectric Properties of ink-Jet printed $Al_2O_3$-resin Hybrid Films

  • Hwang, Myung-Sung;Jang, Hun-Woo;Kim, Ji-Hoon;Kim, Hyo-Tae;Yoon, Young-Joon;Kim, Jong-Hee;Moon, Joo-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.81-81
    • /
    • 2009
  • Non-sintered Alumina films were fabricated via inkjet printing processes without a high temperature sintering process. The packing density of these inkjet-printed alumina films measured around 60%. Polymer resin was infiltrated thru these non-sintered films in order to fill out the 40% of voids constituting the rest of the inkjet-printed films. The concept of inkjet-printed Alumina-Resin hybrid materials was designed in order to be applicable to the ceramic package substrates for 3D-system module integration which may possibly substitute LTCC-based 3D module integration. So, the dielectric properties of these inkjet-printed $Al_2O_3$ hybridmaterialsareofourgreatinterest. We have measured dielectric constant and dissipation factor of the inkjet-printed $Al_2O_3$-resinhybridfilmsbyvaryingtheamountofresininfiltratedthruthe$Al_2O_3$films.

  • PDF

Aging Effect of Bio-inspired Artificial Basilar Membrane with Piezoelectric PVDF Thin Film

  • Kim, Wan Doo;Park, Su A;Kim, Sang Won;Kwak, Jun-Hyuk;Jung, Young Do;Hur, Shin
    • Elastomers and Composites
    • /
    • v.50 no.4
    • /
    • pp.292-296
    • /
    • 2015
  • Biomimetic artificial basilar membrane being a core part of artificial cochlear requires performance evaluation through aging test. To evaluate the aging properties of PVDF piezoelectric membrane used for artificial basilar membrane, its mechanical properties such as tensile strength and elastic modulus and piezoelectric property such as piezoelectric constant were measured. The aging test conditions and acceleration constants were calculated based on Arrhenius model. The changes in tensile strengths and elastic moduli measured were less than 10~20% after aging test equivalent for 10 years. The piezoelectric constants were decreased drastically to 80% of its initial value in the early stage of the aging test and expected to decrease slowly down to 65% over 10 years. The experimental results show the reliability of totally implantable novel artificial cochlear and will contribute its commercialization.

Study on the Optical Properties of Light Diffusion Film with Plate Type Hollow Silica

  • Lee, Ji-Seon;Moon, Seong-Cheol;Noh, Kyeong-Jae;Lee, Seong-Eui
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.5
    • /
    • pp.429-437
    • /
    • 2017
  • Micro hollow plate type silica with low refraction properties was synthesized and its hollow structure was applied as an optical structure to develop a light diffusion material that simultaneously satisfies the requirements of good light diffusibility, high transmissibility, and high luminance. The developed light diffusion material was applied to a light diffusion film and the film's optical properties were assessed. Hollow silica was synthesized by precipitation method using $Mg(OH)_2$ core particles, sodium silicate, and ammonium sulfate as the silica precursors. The concentration of the silica precursor was adjusted to control hollow silica shell thickness. The total light transmittance of the light diffusion film composed of the hollow silica was 94.55%, which was 4.57% higher than that of the PC film; new film's haze was 71.20%, which was 70.9% higher. Furthermore, the luminance increased by 5.34% compared to that of the light source. The reason for the results is not only that the micro plate type hollow silica, which has a low refractive property, played a role in reducing the difference in refractive index between the medium boundaries, but also that there was a light-concentrating effect due to the changing of light paths to the front direction inside the hollow structure. Optical simulation verified the enhanced optical properties when hollow silica was applied to the light diffusion film.

A study on Nano-convergence material technology of semiconductive flame retardant compound to improve impact resistance and electrical properties (내충격성 및 전기적 특성 향상을 위한 반도전성 난연컴파운드의 나노융복합 소재기술에 대한 연구)

  • Han, Jae-Gyu;Jeon, Geun-Bae;Park, Dong-Ha
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.193-198
    • /
    • 2021
  • In this study, a nano-convergence material technology that can satisfy the superior impact resistance and electrical properties of the semiconducting flame retardant compound used in the Oversheath layer of Extra-high voltage cables was studied. When some of the carbon black used in the semiconducting flame-retardant compound was replaced with CNT (carbon nano tube), the change in physical properties was analyzed. Through the application of carbon nanotubes with remarkably excellent electrical properties, even a small amount of conductive filler formulations can provide superior electrical properties. In addition, as the total filler amount is reduced based on the compound, the workability is improved, and in particular, flexibility and impact resistance are improved, which is expected to contribute to the improvement of the durability of the cable.

Inclusions and Mechanical Properties of TMCP Steel under Different RH Process Conditions (RH 공정 조건이 다른 TMCP강의 개재물 및 기계적 특성)

  • Yung-Kug Kwon;Byoung-Chul Choi;Gum-Hwa Lee;Ki-Woo Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.87-94
    • /
    • 2023
  • TMCP(Thermo Mechanical Control Process) steel was continuously cast (CC) by varying the argon gas flow rate and vacuum time in the Ruhrstahl Heraeus (RH) refining process. Using the CC specimens, the distribution of the inclusions and the mechanical properties were evaluated. A lot of oxides and Al-O type inclusions were observed. The average Vickers hardness did not show a constant, but showed dispersion in a certain range. The shape and scale parameters of the CC specimen with an argon gas flow rate of 160Nm3 and a vacuum time of 12 minutes was the best. Mechanical properties (tensile strength, yield strength and elongation) were consistent with the Weibull probability distribution analysis results. The impact resistance was the best for CC specimens with an argon flow rate of 140 Nm3 and a vacuum time of 12 minutes. Although the inclusions and mechanical properties of the CC specimens were evaluated according to the argon gas flow rate and vacuum time, these values were no significant difference.

Evaluation of Mechanical and Interfacial Properties between Glass Fiber and Epoxy Resin after NaCl Solution and Aging Treatments (염수 노화처리 일수에 따른 유리섬유 에폭시간의 기계적 및 계면 물성 변화 평가)

  • Shin, Pyeong-Su;Wang, Zuo-Jia;Kwon, Dong-Jun;Choi, Jin-Yeong;Lee, Sang-Il;Park, Joung-Man
    • Composites Research
    • /
    • v.28 no.1
    • /
    • pp.22-27
    • /
    • 2015
  • Although it is important to have high strength of each of fiber and matrix, interface between fiber and matrix is most important. If NaCl water penetrates the interface, that area will be weak. So experiment about increasing interfacial strength is in process. In this study, the change of properties by mechanical, interfacial and micromechanical tests was observed after NaCl and aging treatment. The changes in mechanical properties of glass fiber were investigated using single-fiber tensile test. Interfacial properties between glass fiber and epoxy resin were evaluated using nondestructive acoustic emission (AE) and micromechanical test applied to fatigue test. Through change of fatigue properties, relative interfacial properties were evaluate. In conclusion, glass fiber diameter decreased and the reduction of mechanical and interfacial was observed with NaCl solution and aging treatment.

The Change in Interfacial and Mechanical Properties for Glass Fiber/p-DCPD Composites with Degree of Ruthenium Catalyst Activation (루테늄촉매 활성정도에 따른 유리섬유/폴리다이사이클로펜타다이엔 복합재료의 기계 및 계면물성 변화)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Park, Ha-Seung;Kwon, Dong-Jun;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.19 no.1
    • /
    • pp.13-18
    • /
    • 2018
  • At ruthenium (Ru) catalyst was exposed from the atmosphere, the degree of catalyst activation decreased. The change of catalyst activity with the number of days of exposure to air for the Ru catalyst was confirmed using the surface tension method quantitatively. Mechanical properties and surfactant change after polymerization by DCPD using Ru catalyst for each air exposure day was evaluated. The Ru catalyst mixed with a dilution agent was exposed in the air and color was monitored for each day. Surface tension was measured using Wilhelmy and PTFE and associated with different catalyst activities. Heat was measured in real time during polymerizing DCPD with Ru catalyst. After polymerization, tensile strength was measured for p-DCPD and the change of material property was measured. Interfacial properties were also evaluated via microdroplet pull-out tests between glass fiber and p-DCPD. The surface tension was stable until the 4 days (33 dyne/cm) whereas the surface energy increased at the 10 days (34 dyne/cm), which could be correlated with oxidation of the catalyst. Tensile property and interfacial shear strength (IFSS) was also stable until the 4 days (tensile strength: 38 MPa and IFSS: 26 MPa) whereas the mechanical property decrease at 10 days (tensile strength: 15 MPa and IFSS: 3 MPa) dramatically.

Evaluation of Adhesion and Electrical Properties of CNT/PU Topcoat with Different CNT Weight Fraction for Aircraft (탄소나노튜브의 함량에 따른 항공기용 탄소나노튜브/폴리우레탄 탑코트의 접착 및 전기적 특성 평가)

  • Kim, Jong-Hyun;Shin, Pyeong-Su;Kim, So-Yeon;Park, Joung-Man
    • Composites Research
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Dispersion and electrical resistance (ER) properties of polyurethane (PU) type topcoat were evaluated using carbon nanotube (CNT) with different CNT weight fraction. CNT was dispersed in PU type topcoat using ultra sonication dispersion method. CNT/PU topcoat was coated on carbon fiber reinforced epoxy composite (CFRC) surface using gravity feed spraying method. Static contact angles of CFRC and CNT/PU topcoat were performed using 4 types of solvents to calculate the work of adhesion between CNT/PU topcoat and CFRC surface. Surface resistance of CNT added PU topcoat was measured to determine CNT dispersion. Adhesion property between CNT/PU topcoat and CFRC was determined via cross hatch cutting test based on ASTM D3359. The optimized condition of CNT weight fraction was found.

Effects of A-site Vacancies on the Piezoelectric Properties of 0.97Bi0.5+x(Na0.78K0.22)0.5-3xTiO3-0.03LaFeO3 Lead-free Piezoelectric Ceramics (A-site Vacancy가 0.97Bi0.5+x(Na0.78K0.22)0.5-3xTiO3-0.03LaFeO3 무연압전 세라믹스의 압전특성에 미치는 영향)

  • Park, Jung Soo;Lee, Ku Tak;Cho, Jeong Ho;Jeong, Young Hun;Paik, Jong Hoo;Yun, Ji Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.527-532
    • /
    • 2014
  • $0.97Bi_{0.5+x}(Na_{0.78}K_{0.22})_{0.5-3x}TiO_3-0.03LaFeO_3$ lead-free piezoelectric ceramics were fabricated by a solid state reaction method. $LaFeO_3$ additives were added to $Bi_{0.5}(Na_{0.78}K_{0.22})_{0.5}TiO_3$ for volatile compensation of bismuth and sodium ions in the sintering process. To create A-site vacancies, the mole ratio and charge valence of A-site ions ($Bi^{3+}$, $Na^+$ and $K^+$) were controlled. The improved piezoelectric properties were observed by addition of $LaFeO_3$ and control of A-site vacancies. In particular, a $d_{33}^*(S_{max}/E_{max})$ value of 614pm/V and an electric field induced strain of 0.33% was observed in $0.97Bi_{0.505}(Na_{0.78}K_{0.22})_{0.485}TiO_3-0.03LaFeO_3$ ceramic.