• Title/Summary/Keyword: convergence properties

Search Result 1,908, Processing Time 0.026 seconds

Spectral Radiative Characteristics of Heat Resisting Ceramics Materials (내열성 세라믹스 재료의 분광복사특성)

  • Sang, Hie Sun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.1
    • /
    • pp.35-40
    • /
    • 2001
  • A spectral measurement system for reflection and transmission properties by using an optical fiber and an ellipsoidal mirror was newly developed. The hemispherical reflectance and transmittance spectra of several heating resisting ceramics materials were measured from visible to middle infrared region. The directional characteristics of reflection and transmission were also investigated in consideration of the absorptance. The measured data were analyzed by using a four flux model of radiation transfer, The radiation properties could be estimated by the obtained scattering and absorption coefficient spectra.

  • PDF

MODIFICATIONS OF PRODUCT CONVERGENCE STRUCTURES

  • Park, Sang-Ho
    • East Asian mathematical journal
    • /
    • v.17 no.2
    • /
    • pp.217-224
    • /
    • 2001
  • In this paper, we introduce the notion of some modification of given convergence structure and product convergence. Also, we find some properties which hold between the modification associated with a product of convergence structures and the product of modifications associated with the factor convergence structures.

  • PDF

Development of an Oraganic-Inorganic Hybrid Coating Solution for Improvement in Flame Retardant Properties of Wallpapers (벽지의 방염특성을 개선하기 위한 유-무기 하이브리드 코팅 용액 개발)

  • Jeong, Gyu Jin;Kang, Tae Wook;Kim, Jin Ho;Kim, Bong Man;Seo, Eun Kyung;Bae, Byungseo;Kim, Sun Woog
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.178-183
    • /
    • 2022
  • For enhancing the flame-retardant properties of wallpapers, we developed an organic-inorganic hybrid solution with ZrSiO4 as a functional ceramic powder, coated on non-woven fabric using dip coating, spray coating, and slot-die coating methods. Their flame retardant properties were characterized by a 45° combustion tester, which is manufactured according to the flame-retardant performance standard (KOFEIS 1001 and KS F 2819). In organic-inorganic hybrid solution, with increasing the concentration of acid-catalyst (acetic acid), the precipitation of ZrSiO4 powders increased, and the flame retardant properties decreased. The highest flame retardant result was obtained for the solution adding 5 wt% acetic acid. The optimization of the coating method and coating number resulted in the most excellent flame-retardant properties being obtained for the non-woven fabric coated for 5 or 7 times by dip coating method, and their flame-retardant properties corresponded to class 2 flame-retardant performance of wallpapers.

Interfacial and Mechanical Properties of Glass Fiber Reinforced Epoxy Composites with Different Crosslinking Density after Saline Water Aging (기지재의 가교밀도에 따른 유리섬유 복합재료의 염수노화 후 계면 및 기계적 물성)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Park, Ha-Seung;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.186-191
    • /
    • 2018
  • Condition and properties of composites with different chemical structure of epoxy matrix were observed after saline solution treatment. Epoxy was used as matrix and the flexibility was controlled by using 2 typed-epoxies and 3 types hardeners (amine, acid anhydride and amide). Saline water treatment was conducted with 6 wt% NaCl solution at $60^{\circ}C$ for 0, 15, and 30 days. Cross section was observed and interfacial and mechanical and properties was evaluated. Amine type exhibited the highest crosslinking density and mechanical and interfacial properties whereas water absorbance was lowest. It is because that the water molecules can be hardly penetrate into the epoxy matrix or the interface between epoxy and glass fiber and it leads to saline water resistance of composites.

Structural and Electrical Properties of (La,Nd,Sr)MnO3 Ceramics for NTC Thermistor Devices

  • Shin, Kyeong-Ha;Park, Byeong-Jun;Lim, Jeong-Eun;Lee, Sam-Haeng;Lee, Myung-Gyu;Park, Joo-Seok;Lee, Sung-Gap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.292-296
    • /
    • 2022
  • (La0.5Nd0.2Sr0.3)MnO3 specimens were prepared by a solid-state reaction. In all specimens, X-ray diffraction patterns of an orthorhombic structure were shown. The fracture surfaces of (La0.5Nd0.2Sr0.3)MnO3 specimens showed a transgranular fracture pattern be possibly due to La ions (0.122 nm) as a perovskite A-site dopant substituting for Nd ions (0.115 nm) having a small ionic radius. The full-width at half maximum (FWHM) of the Mn 2p XPS spectra showed a value greater than that [8] of the single valence state, which is believed to be due to the overlapping of Mn2+, Mn3+, and Mn4+ ions. The dependence of Mn 2p spectra on the Mn3+/Mn4+ ratio according to sintering time was not observed. Electrical resistivity resulted in the minimum value of 100.7 Ω-cm for the specimen sintered for 9 hours. All specimens show a typical negative temperature coefficient of resistance (NTCR) characteristics. In the 9-hour sintered specimen, TCR, activation energy, and B25/65-value were -1.24%/℃, 0.19 eV, and 2,445 K, respectively.

Enhancing the Mechanical Properties of Z-Spring by Implementing CF&GF Hybrid Prepreg Lamination Patterns (CF&GF Hybrid Prepreg 적층 패턴에 따른 Z-Spring의 기계적 물성 향상에 관한 연구)

  • Kim, Jeong-Keun;Choi, Sun-Ho;Kim, Young-Keun;Kim, Hong-Gun;Kwac, Lee-Gu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.53-59
    • /
    • 2021
  • In vibration-free vehicles such as limousine buses, the vibration is minimized by installing an air spring instead of the leaf spring used in the existing freight cars to prevent the damage to the loaded cargo from shocks generated during movement. In the existing vehicles, steel structures support the air spring system. This study was aimed at replacing the steel structures used in the Z-spring by carbon fiber and glass fiber reinforced plastics. In addition, the mechanical properties (elastic modulus, tensile strength, and shear strength) of carbon fiber and glass fiber prepreg were derived using specimens molded with the corresponding prepreg. The final goal was to develop a material lighter than the conventional steel material but with enhanced mechanical properties. Although the CF prepreg exhibited excellent mechanical properties, the production cost was extremely high. To overcome this limitation, hybrid composites with GF prepreg were examined, which are expected to be promising future materials.

Effect of biofibers addition on the structure and properties of soy protein composite films

  • Ye Eun Kim;Su Jin Kim;Yong-Il Chung;Chae Hwa, Kim;Tae Hee Kim;In Chul Um
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.48 no.1
    • /
    • pp.25-32
    • /
    • 2024
  • Soy protein isolate (SPI) has garnered researchers' attention due to its abundance, costeffectiveness, excellent biocompatibility, hemo-compatibility, and biodegradability. However, SPI faces limitations in application due to poor processability and weak mechanical strength. Substantial efforts have been made to address these challenges. In this preliminary study, glycerol and biofibers were added to SPI to improve the mechanical properties and film forming, and glyoxal was employed to crosslink SPI molecules. The microstructure and mechanical properties of the resulting SPI/composite films were evaluated. A 15% addition of glycerol proved sufficient for good film formation. Among the biofibers, short SF microfibers were the most effective in enhancing breaking strength, while TEMPO-oxidized CNF (cellulose nanofiber) excelled among CNFs. Crosslinking with glyoxal significantly enhanced the mechanical properties, with the type of biofiber minimally affecting the mechanical properties of the crosslinked SPI composite films.

Optimum Conditions for Improvement of Mechanical and Interfacial Properties of Thermal Treated Pine/CFRP Composites (열처리된 Pine/탄소섬유 복합재료의 기계적 및 계면물성 향상을 위한 최적 조건)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.4
    • /
    • pp.241-246
    • /
    • 2017
  • The brittle nature in most FRP composites is accompanying other forms of energy absorption mechanisms such as fibre-matrix interface debonding and ply delamination. It could play an important role on the energy absorption capability of composite structures. To solve the brittle nature, the adhesion between pines and composites was studied. Thermal treated pines were attached on carbon fiber reinforced polymer (CFRP) by epoxy adhesives. To find the optimum condition of thermal treatment for pine, two different thermal treatments at 160 and $200^{\circ}C$ were compared to the neat case. To evaluate mechanical and interfacial properties of pines and pine/CFRP composites, tensile, lap shear and Izod test were carried out. The bonding force of pine grains was measured by tensile test at transverse direction and the elastic wave from fracture of pines was analyzed. The mechanical, interfacial properties and bonding force at $160^{\circ}C$ treated pine were highest due to the reinforced effect of pine. However, excessive thermal treatment resulted in the degradation of hemicellulose and leads to the deterioration in mechanical and interfacial properties.