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MODIFICATIONS OF PRODUCT
CONVERGENCE STRUCTURES

SANG Ho PaARrk

AssTRACT In this paper, we introduce the notion of some modifica-
tion of given convergence structure and product convergence. Also,
we find some properties which hold between the modification asso-
ciated with a product of convergence structures and the product of
modifications associated with the factor convergence structures

I. Introduction

A convergence structure defined by Kent [4] is a correspondence
between the filters on a given set. X and the subsets of X which specifies
which filters converge to which points of X. This concept is defined to
include types of convergence which are more general than that defined
by specifying a topology on X. Thus, a convergence structure may be
regarded as a generalization of a topology.

With a given convergence structure g on a set X, Kent [4] intro-
duced associated convergence structures which are called a topological
modification, a pretopological modification and a pseudotopological
modification. Also, Kent [2] introduced product convergence struc-
tures.

In this paper, we shall study some properties of the product conver-
gence structure of given convergence structures and their modifications.
In particular, we will show that the pseudotopological modification of
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the product convergence structure is equal to the product convergence
structure of the pseudotopological modifications of factor convergence
structures.

Finally, we obtain some inequalities which hold between modifica-
tions of the product convergence structure and the product convergence
structure of modifications associated with the factor convergence struc-
tures.

II. Preliminaries

A convergence structure ¢ on a set X is defined to be a function
from the set F(X) of all filters on X into the set P(X) of all subsets
of X, satisfying the following conditions:

(1) z € g(z) for all x € X

(2) @ C T implies ¢(®) C ¢(¥);

(3) z € ¢(®) imples z € ¢(® N ),
where & denotes the principal ultrafilter containing {z}; ® and ¥ are in
F(X) Then the pair (X, q) is called a convergence space. If ¢ € ¢(®),
then we say that ® ¢-converges to x. The filter V,(z) obtained by
intersecting all filters which g-converge to z is called the g-ne:ghborhood
filter at x. If Vy(x) g-converges to x for each £ € X, then g is said to
be pretopological and the pair (X, q) is called a pretopological space. A
convergence structure ¢ is said to be pseudotopological if @ g-converges
to £ whenever each ultrafilter finer than ® ¢-converges to x, and the
pair (X, q) is called a pseudotopological space.

A convergence structure g is said to be topologacal if q is pretopolog-
ical and for each = € X, the filter V,(z) has a filter base By{z) with
the following property:

y € G(z) € By(z) implies G{z) € B,(y).

Let C(X) be the set of all convergence structures on X, partially
orded as follows:

g, <gq, ffil ¢,(®)Cq,(®) for all & € F(X).

If q, < g,, then we say that ¢, is coarser than g,, and ¢, is finer than
q,-
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For any ¢ € C(X), we define the following related convergence struc-
tures, p(q), 7(g) and A(q):

(1) z € p(q)(®) iff z € ¢q(9') for each ultrafilter @ finer than P.

(2) z € w(g){®) iff Vo(z) C &.

(3) = € A(q)(®) iff Uy(x) C &, where U,(z) is the filter generated by
the sets U € V,(z) which have the property: y € U implies U € V,(y).
In this case, p(q}, n{(q) and A(g) are called the pseudotopological modifi-
cation, the pretopological modification and the topological modification
of ¢, and the pairs (X, p(q)),(X,7(q)) and (X, A(q)) are called the
pseudotopological modification, the pretopological modification and the
topological modification of (X, q), respectively.

ProproSITION 1([4]) (1) pq) 1s the finest pseudotopology coarser
than q.

(2) w(q) s the finest pretopology coarser than q.

{3) A(q) is the finest topology coarser than q.

(4) Mq) < 7(q) < p(g) < gq.

Let f be a map from X into Y and ® a filter on X. Then f(®)
means the filter generated by { f(F) | F € ®}.

Let f be a map from a convergence space (X, ¢) to a convergence
space (Y,p). Then f is said to be continuous at a point z € X, if
the filter f(®) on Y p-converges to f(z) for every filter ® on X g¢-
converging to x. If f is continuous at every point z € X, then f is
said to be continuous. Also, f is said to be neighborhood preserving, if
Vol£ () = F(Vy(a)).

ProrosiTioN 2([6]) If f:(X,q) — (Y,p) 18 continuous at z € X,
then V,(F(z)) C f(Vy(s)).

Let (Xx,gx) be a convergence space, X = [[,c X» the product of
sets and Py: X — (X2, ¢») the A-th projection for each A € A. The
product convergence structure g on X is defined by specifying that for
any z € X and ¢ € F(X),

z € g(®) iff P\(z) € ga(Py(P)) for each X € A.

In this case, the product convergence structure g is denoted by [, ., ¢x
and the pair (X, ¢) is called the product convergence space of {( X, g») |
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A € A}. The product convergence structure g is the coarsest conver-
gence structure on X with respect to which all projections Py: X —
(X, 92) are continuous ([9]). We know that, given a filter &5 on X
for each A € A, the family {P7'(Bx) | Bx € ®x,A € A} has the fi-
nite intersection property. The product filter of {®, | A € A} means
the filter on X which has a base the set of subsets of X of the form
DAEA:PA'I(BA), where By € @, for each A € A and A’ is a finite subset
of A. The product filter of {®, | A € A} is denoted by J],c5 @ and
this product filter & = [],_, ®a is the coarsest filter on X such that
Py (@) = @, for each A € A(See p64, [1}).

The following Proposition 3 and Proposition 4 are immediate results
of above definitions.

PROPOSITION 3 Let (X, qx) be a convergence space, ®x a filter on
Xx ond Px: X = [Lcp Xoo = X the A-th progection for each X € A.
Then, for a filter ® on X, x € X and ¢ = [],cp qx, the following hold:

(1) @5 = Pa(Il,cr ®r). (2) Tlhea Pr(®) C @.

(3) P 18 neighborhood preserving.

(4) Haea Va, (Pa(2)) C Vy(x)(If g is pretopological for each A € A,
then the equality holds. ).

PROPOSITION 4 Let g5 and py, be convergence structures on Xy for
each A € A.

If g\ < px for each A € A, then, H,\eA o Z [1aeapr

PROPOSITION 5 (19])  Let (X, qn) be a convergence space for each
A€ A and (X,q) the product convergence space of {(Xx,qx) | A € A}
Then the following hold:

qx 18 pretopological for each A € A aoff q is pretopological.

PROPOSITION 6. Let X be a nonempty set for each A € A. Let
F be a filier on X = [[,cp X0 and M, be an ultrafilter on X, unth
M, D P,(F). Then, there 1s an ultrofilter M on X such that M D F
and P (M) =M,.

PROOF Let @ ={A x [[hepr_f,qa X2 | A€M} and B={ANB|
A € F,B € ®}. Then, B is a filter base on X. Let ¥ be the filter
generated by B. There is an ultrafilter M on X such that ¥ C M.
Then F C M, and ® C M.
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On the other hand, let A, € M, Then A, x [ ea_q,3X2) €@ C
¥ C M, and so A, € P,(M). Therefore M,, C P,(M). Thus, by the
definition of ultrafilter, M, = P,(M). The proof is complete

I1l. Main Results

THEOREM 7 Let (X, qx) be a convergence space for each A € A

and (X, q) the product convergence space of {(Xx,4») | A € A}. Then
the follounng hold:

(1) If q» is topological for each A € A, then g 18 topologuical.
(2) g is pseudotopological for each X € A iff q 18 pseodotopologrcal.

PROOF {1) Suppose that ¢, is topological for each A € A. Let
z € X and Pa(z) = zx. Then the filter V,, {(z) has a filter base By, ()
with the following property: yx € Gx € Bg, {z») implies G € By, {yx)-
Let By(x) be the family of subsets of X of the form [, Py (Ba),
where By € By, (zx) and A’ is a finite subset of A. Then By(z) is the
filter base for the product filter [],., Vg, (2x). Since g is pretopologi-
cal, [{,ea Vax (22) = V,(z). Therefore, B, (z) is the filter base for V().
Let y € G € By(z) and G = N, cp PTH(B)), where By € By, (za) and
A’ is a finite subset of A. Then y € P{!(B,) and hence P\(y) € B, for

each A € A’ Thus, By € By, (PA(y)) and G € Bg(y). Consequently, ¢
is topological.

(2) Suppose that gy is pseudotopological for each A € A. Let &
be a filter on X = [],co Xx- Then z € ¢(M) for all ultrafilters M
finer than ® on X. Then Py(z) € ga(Pa(M)) for each A € A. Let
M, be apn ultrafilter on X with My D P\(®). By Proposition 6,
there is an ultrafilter M’ on X such that M’ D & and Py(M') = M.
Thus, Py(z) € gx(PA\(M') = g»(M,). Since g is pseudotopological,
we obtain Py(x) € qx(Py(®)) for each A € A. Thus, = € ¢(3), and so
g is pseudotopological.

Conversely, suppose that g is pseudotopological. Let @, be a filter
on Xy and z) € gx(Mp) for all ultrafilters My finer than . Take a
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filter ¥ on X as follows ;

‘I;:H¢za . =

{ ®, fori=A,
€A

©;  fori o A

where z, € X;.

Let M be an ultrafilter on X finer than ¥. Then, P,(M; = ¢ (W) =
¢; foreach i € A. Thus, we obtain that ¢;(P,(M)) D ¢.(P.(9)) = ¢.{¢:)
and z, € q,(¢;) for each i € A — {A}. Also, zy € @ (FA(M;, since
Py (M) is an ultrafilter finer than ®,. Therefore z; € ¢,(I*{A1)) for
each ¢ € A. Thus, z = (z;)en € g(M). Since q is pseudo-topological,
we obtain 2 = (z,)iea € ¢(¥). Thus, Py\(z) = zx € (P ¥)) =
gx(®,). Consequently, g, is pseudotopological. The proof is complete.

The following Theorem & means that the pseudotopological modi-
fication of the product convergence structure is equal to the product
convergence structure of the pseudotopological modifications of factor
convergence structures

THEOREM 8 Let (X, p(qa)) be the pseudotopological mndification
of a convergence space (X, qx) for each A € A. Then p([[xepa @) =

[Taearlar)-

Proor By Proposition 1, Proposition 4 and Theorem 7. it is clear
that p(J[xea @) 2 I1nea £(g2). Weshow that p(TTscp an) < Tlaea plar)-
Let F be a filter on X = [[5c4 X and = € ([[,cp p(ar)XF). Then,
xx € p(gr)(Pa(F)) for each A € A. Let M be an ultrafilter finer than
F. Then P (M) D Py(F), and so Py{M) is an ultrafilter on X. Thus
zx € g (Pa(M)) for each A € A. Therefore, x € {[[,c4 ¢2)(M) and
2 € (p([Ixea DI(F))-

Consequently, we obtain that [, 2(ax)(F) C (o(Ihea @2 ))(F)s
that is, p([Iaea @) < [1aea £(g2). This proof is complete.

THEOREM 9. Let (X, w{gy)) be the pretopological modification of
a convergence space (Xx,qx) for each A € A. Then the following are
equivalent:

(a) HAeA n(gr) = “(H,\ez\ o)

(6) VHXEAQA (z) = erA VqA (Pa(z)) foreachz € X = HAeA X
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PRrOOF Let ¢ = [, gx and ¢* = [T, ca 7gn)-

(a) == (b): Suppose that ¢* = n(g), that is, ¢*(®) = 7(g)(®) for ev-
ery & ¢ F(X). Consider that ¢*(®) = {z € X | PA(z) € n(gx)(Pr(®D))
for each A € A} = {z € X | Vg (Pa(z)) C P»(2) for each A € A} and
w(q)(®) = {z € X | V(z) C ®}. Since ¢*(®) = w(q)(®), we obtain
that

Vo, (Pa(z)) C PA(®) for each A € A iff Vo(z) C 2.

By Proposition 3, Vg (Pa(z)) < Pa(Jlsca Ve, (Pr(2)) for each A € A.
Thus, Vy(z)  [Tacy Ve, (Pa(@)) 80d 50 V(@) = [T Va, (Pa(2).

(b) == (a). By Proposition 1, Proposition 4 and Proposition 9, it
is clear that ¢* < n(g). Suppose that V,(z) = [[yea Vo, (Pa(%)) for
each A€ Aand z € X. Let ® € F(X) and y € ¢*(®). Then Py\(y) €
(g )(Pa(®)) and Vg (Pr(y)) C PA(®) for each A € A. Thus, Voly) =
Iaca Vo, (Pa(®) € [laen PA(®) C @ and y € 7(g)(®). Therefore,
¢* () C 7(¢)(®) and so n(q) < ¢*. Consequently, ¢* = 7(g).

Finally, we obtain the following Theorem 10

THEOREM 10 Let (X, A(gr)), (X, w{qy)) and (X, plgxr)) be the
topological, the pretopological and the pseudotopological modification of

a convergence space {X,¢x) for each A € A, respectively. Then the
follounng hold:

W T M) < M an) < (I aw)-

AE€A A€A ACA
(2) H AMar) < H w(ga) < ﬂ(H )
AEA AEA A€EA
<p([] a0 = II plar) < IT o
AEA AEA A€A
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