• Title/Summary/Keyword: convergence properties

Search Result 1,908, Processing Time 0.028 seconds

Exploratory study on the Spam Detection of the Online Social Network based on Graph Properties (그래프 속성을 이용한 온라인 소셜 네트워크 스팸 탐지 동향 분석)

  • Jeong, Sihyun;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.567-575
    • /
    • 2020
  • As online social networks are used as a critical medium for modern people's information sharing and relationship, their users are increasing rapidly every year. This not only increases usage but also surpasses the existing media in terms of information credibility. Therefore, emerging marketing strategies are deliberately attacking social networks. As a result, public opinion, which should be formed naturally, is artificially formed by online attacks, and many people trust it. Therefore, many studies have been conducted to detect agents attacking online social networks. In this paper, we analyze the trends of researches attempting to detect such online social network attackers, focusing on researches using social network graph characteristics. While the existing content-based techniques may represent classification errors due to privacy infringement and changes in attack strategies, the graph-based method proposes a more robust detection method using attacker patterns.

Comparison of Mechanical Properties on Helical/Hoop Hybrid Wound HNT Reinforced CFRP Pipe with Water Absorption Behavior (CFRP 파이프의 와인딩 적층 패턴 설계 및 HNT 나노입자 보강에 따른 수 환경에서의 기계적 물성 평가)

  • Choi, Ji-Su;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.174-179
    • /
    • 2021
  • Currently, fluid transfer steel pipes take a lot of time and expense to maintain all facilities due to new construction and painting or corrosion and aging. Therefore, this study was conducted for designing a CFRP pipe structure with high corrosion resistance and chemical resistance as a substitute for steel pipes. The helical/hoop pattern was cross-laminated to improve durability, and HNT was added to suppress the moisture absorption phenomenon of the epoxy. The HNT/CFRP pipe was manufactured by a filament winding process, and performed a mechanical property test, and a moisture absorption test in distilled water at 70℃. As a result, the highest bending strength was obtained when the hoop pattern was laminated with a thickness equivalent to 0.6% of the pipe. The 0.5 wt% HNT specimen had the highest moisture absorption resistance. Also, the delamination phenomenon at the interlayer interface was delayed, resulting in the lowest strength reduction rate.

A Study on User Experience Development Based on Emotion-Experience (감성-경험 기반의 사용자 경험 디자인 개발 연구)

  • Han, Bomyi;Nah, Ken
    • Journal of Digital Convergence
    • /
    • v.20 no.4
    • /
    • pp.627-636
    • /
    • 2022
  • The purpose of this study is to maximize the development and utilization of digital innovation. First, analyzed the status of industrial development and digital innovation. Second, examined emotion and experience, looked into their types and properties. Third, attempted to develop a more creative and innovative user experience. The results of this study were presented as a theoretical basis, specification of research direction and research scope, and design analysis direction. It is expected to be used as a basic data that can help how to approach and interpret human emotions and behaviors in order to provide differentiated experiences by he essential concepts of emotions, experiences in various fields in the future.

A Study on Selective Transfer and Reflow Process of Micro-LED using Micro Stamp (마이크로 스탬프를 이용한 Micro-LED 개별 전사 및리플로우 공정에 관한 연구)

  • Han, Seung;Yoon, Min-Ah;Kim, Chan;Kim, Jae-Hyun;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • v.38 no.3
    • /
    • pp.93-100
    • /
    • 2022
  • Micro-light emitting diode (micro-LED) displays offer numerous advantages such as high brightness, fast response, and low power consumption. Hence, they are spotlighted as the next-generation display. However, defective LEDs may be created due to non-uniform contact loads or LED alignment errors. Therefore, a repair process involving the replacement of defective LEDs with favorable ones is necessitated. The general repair process involves the removal of defective micro-LEDs, interconnection material transfer, as well as new micro-LED transfer and bonding. However, micro-LEDs are difficult to repair since their size decreases to a few tens of micron in width and less than 10 ㎛ in thickness. The conventional nozzle-type dispenser for fluxes and the conventional vacuum chuck for LEDs are not applicable to the micro-LED repair process. In this study, transfer conditions are determined using a micro stamp for repairing micro-LEDs. Results show that the aging time should be set to within 60 min, based on measuring the aging time of the flux. Additionally, the micro-LEDs are subjected to a compression test, and the result shows that they should be transferred under 18.4 MPa. Finally, the I-V curves of micro-LEDs processed by the laser and hot plate reflows are measured to compare the electrical properties of the micro-LEDs based on the reflow methods. It was confirmed that the micro-LEDs processed by the laser reflow show similar electrical performance with that processed by the hot plate reflow. The results can provide guidance for the repair of micro-LEDs using micro stamps.

Characteristics of Organic Solar Cell having an Electron Transport Layer co-Deposited with ZnO Metal Oxide and Graphene using the Cyclic Voltammetry Method (순환전류법을 이용해 ZnO 금속산화물과 Graphene을 동시에 제막한 전자수송층을 갖는 유기태양전지의 특성)

  • Ahn, Joonsub;Han, Eunmi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.71-75
    • /
    • 2022
  • Graphene oxide was stirred with a ZnCl2:NaCl electrolyte and electrochemically coated by cyclic voltammetry to simplify the electron transpfer layer film forming process for organic solar cells and to fabricate an organic solar cell having it. The device structure is FTO/ZnO:graphene/P3HT:PCBM/PEDOT:PSS/Ag. Morphology and chemical properties of ETL were confirmed by scanning electron microscopy(SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. As a result of XPS measurement, ZnO metal oxide and carbon bonding were simultaneously confirmed, and ZnO and graphene peaks were confirmed by Raman spectroscopy. The electrical characteristics of the manufactured solar cell were specified with a solar simulator, and the ETL device coated twice at a rate of 0.05 V/s showed the highest photoelectric conversion efficiency of 1.94%.

Spray Image of Gelled Kerosene with Nanoparticles at Multi-hole Pintle Injector (미세입자를 첨가한 케로신 젤 추진제의 멀티 홀 핀틀 인젝터에서의 분무 이미지)

  • Hwang, Juhyun;Choi, Myeunghwan;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.5
    • /
    • pp.73-79
    • /
    • 2021
  • This study was carried out to analyze the properties of the gel propellant and spray characteristics according to the addition of fine particles. The multi-hole diameter was 0.4 mm to induce a high shear rate, and a kerosene gel propellant was prepared using 5 wt% of the Thixatrol ST and SUS304 of 100 nm. The experiment was conducted by fixing the supply pressure in the axial direction to 0.7 MPa and adjusting the supply pressure in the radial direction from 0.7 MPa to 2.1 MPa. Due to the addition of fine particles, pressure vibration during spraying, a small TMR(Total Momentum Ratio) of up to 0.19, and a phenomenon that the spraying angle rapidly increased to more than 70 degrees occurred.

Updating Obstacle Information Using Object Detection in Street-View Images (스트리트뷰 영상의 객체탐지를 활용한 보행 장애물 정보 갱신)

  • Park, Seula;Song, Ahram
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.599-607
    • /
    • 2021
  • Street-view images, which are omnidirectional scenes centered on a specific location on the road, can provide various obstacle information for the pedestrians. Pedestrian network data for the navigation services should reflect the up-to-date obstacle information to ensure the mobility of pedestrians, including people with disabilities. In this study, the object detection model was trained for the bollard as a major obstacle in Seoul using street-view images and a deep learning algorithm. Also, a process for updating information about the presence and number of bollards as obstacle properties for the crosswalk node through spatial matching between the detected bollards and the pedestrian nodes was proposed. The missing crosswalk information can also be updated concurrently by the proposed process. The proposed approach is appropriate for crowdsourcing data as the model trained using the street-view images can be applied to photos taken with a smartphone while walking. Through additional training with various obstacles captured in the street-view images, it is expected to enable efficient information update about obstacles on the road.

Investigation on Electrochemical Property of CNT Fibers and its Non-enzymatic Sensing Performance for Glucose Detection (CNT Fibers의 전기화학적 특성 및 비효소적 글루코스 검출 성능 고찰)

  • Song, Min-Jung
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.159-164
    • /
    • 2021
  • As the attachable-type wearable devices have received considerable interests, the need for the development of high-performance electrode materials of fabric or textiles type is emerging. In this study, we demonstrated the electrochemical property of CNT fibers electrode as a flexible electrode material and its non-enzymatic glucose sensing performance. Surface morphology of CNT fibers was observed by SEM. And the electrochemical characteristics were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. The CNT fibers based sensor exhibited improved sensing performances such as high sensitivity, a wide linear range, and low detection limit due to improved electrochemical properties such as low capacitive current, good electrochemical activity by efficient direct electron transfer between the redox species and the electrode interface. Therefore, this study is expected to be used as a basic research for the development of high performance flexible electrode materials based on CNT fibers.

Vegetation Effects and Properties on Green Soil Blended with Cement-Based Materials for Slope Stability (시멘트 기반 재료를 혼합한 사면 안정용 녹생토의 물성 및 식생 영향성)

  • Choi, Yoon-Suk;Kim, Joo-Hyung;Cho, Young-Keun;Kim, Ho-Kyu;Park, Ok-Yun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.117-126
    • /
    • 2021
  • An experimental study was carried out to investigate the applicability of cement-based materials for green soil which is a soil for promoting plant growth. The results show that the shear strength of the green soil mixed with gypsum cement (No.3) was low, but the hardness (23.6mm) and pH value (7.4) was most suitable for the vegetation environment. In addition, the initial vegetation germination of green soil, which improved performance by adding a moisturizer, was slower than that of general green soil, and the conductivity value tended to be slightly higher. On the other hand, the slope adhesion of advanced green soil was high, and it was found that the plant growth rate and the regeneration capacity were superior after time passed.

Sintering process optimization of ZnO varistor materials by machine learning based metamodel (기계학습 기반의 메타모델을 활용한 ZnO 바리스터 소결 공정 최적화 연구)

  • Kim, Boyeol;Seo, Ga Won;Ha, Manjin;Hong, Youn-Woo;Chung, Chan-Yeup
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.6
    • /
    • pp.258-263
    • /
    • 2021
  • ZnO varistor is a semiconductor device which can serve to protect the circuit from surge voltage because its non-linear I-V characteristics by controlling the microstructure of grain and grain boundaries. In order to obtain desired electrical properties, it is important to control microstructure evolution during the sintering process. In this research, we defined a dataset composed of process conditions of sintering and relative permittivity of sintered body, and collected experimental dataset with DOE. Meta-models can predict permittivity were developed by learning the collected experimental dataset on various machine learning algorithms. By utilizing the meta-model, we can derive optimized sintering conditions that could show the maximum permittivity from the numerical-based HMA (Hybrid Metaheuristic Algorithm) optimization algorithm. It is possible to search the optimal process conditions with minimum number of experiments if meta-model-based optimization is applied to ceramic processing.