• Title/Summary/Keyword: convergence free

Search Result 826, Processing Time 0.024 seconds

Computation of Incompressible Flows Using Higher Order Divergence-free Elements (고차의 무발산 요소를 이용한 비압축성 유동계산)

  • Kim, Jin-Whan
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.9-14
    • /
    • 2011
  • The divergence-free finite elements introduced in this paper are derived from Hermite functions, which interpolate stream functions. Velocity bases are derived from the curl of the Hermite functions. These velocity basis functions constitute a solenoidal function space, and the gradient of the Hermite functions constitute an irrotational function space. The incompressible Navier-Stokes equation is orthogonally decomposed into its solenoidal and irrotational parts, and the decoupled Navier-Stokes equations are then projected onto their corresponding spaces to form appropriate variational formulations. The degrees of the Hermite functions we introduce in this paper are bi-cubis, quartic, and quintic. To verify the accuracy and convergence of the present method, three well-known benchmark problems are chosen. These are lid-driven cavity flow, flow over a backward facing step, and buoyancy-driven flow within a square enclosure. The numerical results show good agreement with the previously published results in all cases.

AMDM for free vibration analysis of rotating tapered beams

  • Mao, Qibo
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.419-432
    • /
    • 2015
  • The free vibration of rotating Euler-Bernoulli beams with the thickness and/or width of the cross-section vary linearly along the length is investigated by using the Adomian modified decomposition method (AMDM). Based on the AMDM, the governing differential equation for the rotating tapered beam becomes a recursive algebraic equation. By using the boundary condition equations, the dimensionless natural frequencies and the closed form series solution of the corresponding mode shapes can be easily obtained simultaneously. The computed results for different taper ratios as well as different offset length and rotational speeds are presented in several tables and figures. The accuracy is assured from the convergence and comparison with the previous published results. It is shown that the AMDM provides an accurate and straightforward method of free vibration analysis of rotating tapered beams.

Solution of the Linear Free Surface Problem by a Discrete Singularity Method (집중특이점분포법(集中特異點分布法)을 이용(利用)한 선형자유표면문제(線型自由表面問題)의 해석(解析))

  • Chang-Gu,Kang;Seung-Il,Yang;Chang-Sup,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 1981
  • In this paper, it is demonstrated that, with the distribution of lowest order concentrated(discrete) singularities of delta function nature, the solution to the linear free surface problem can be obtained with a remarkable degree of accuracy. The linear boundary value problem is formulated subject to boundary conditions for the determination of strengths of singularities; the simple sources above(not on) the free surface and the vortices on the body surface. Three sample calculation were performed` the flow about a submerged vortex of known strength, the flow past a submerged circular cylinder, and the flow around a hydrofoil section. The convergence of the numerical procedure is achieved with a relatively small number of elements. The final results are compared with those of the published works, and are considered very satisfactory.

  • PDF

Vibration-free Control of Double Integrator Typed Motor via Loop Transfer Recovery (루프 전달 회복을 통한 이중 적분 모터의 무진동 제어)

  • Suh, Sang-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.10
    • /
    • pp.900-906
    • /
    • 2010
  • This note proposes vibration-free motor control through modified LQG/LTR methodology. A conventional LQG/LTR method is a design tool in the frequency domain. However, unlike the conventional one, the proposed one is a time response based design method. This feature is firstly designed by parameterized settling time control gain through the target loop design procedure and the feature is secondly realized by loop transfer recovery. In order to show convergence to the target loop transfer functions, asymptotic behaviors of the open and the closed loop transfer functions are shown. At the conclusion, it is verified that the proposed method is robustly stable to parametric uncertainties through ${\mu}$-plot.

Free vibration of symmetrically laminated quasi-isotropic super-elliptical thin plates

  • Altunsaray, Erkin
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.493-508
    • /
    • 2018
  • Free vibration analysis of super-elliptical composite thin plates was investigated. Plate is formed by symmetrical quasi-isotropic laminates. Rayleigh-Ritz method was used for parametric analysis based on the governing differential equations of Classical Laminated Plate Theory (CLPT). Simply supported and clamped boundary conditions at the periphery of plates were considered. Parametric study was performed for the effect of different lamination type, aspect ratio, thickness and super-elliptical power on natural frequencies. Convergence study and validation of isotropic case were achieved. A number of design parameters like different dimensions, structure systems, panel sizes, panel thicknesses, lamination sequences, boundary conditions and loading conditions must be considered in the production of composite ships. The number of possible combinations practically may be so high that a parametric study should be carried out in order to determine the optimum design parameters rapidly during the preliminary design stage. The use of Rayleigh-Ritz method could make this parametric study possible. Thereby it might be decreasing the consumption of time, material and labor. Certain results for some different super-elliptical powers presented in tabulated form in Appendix for designers as well.

Adaptive nodal generation with the element-free Galerkin method

  • Chung, Heung-Jin;Lee, Gye-Hee;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.635-650
    • /
    • 2000
  • In this paper, the adaptive nodal generation procedure based on the estimated local and global error in the element-free Galerkin (EFG) method is proposed. To investigate the possibility of h-type adaptivity of EFG method, a simple nodal refinement scheme is used. By adding new node along the background cell that is used in numerical integration, both of the local and global errors can be controlled adaptively. These errors are estimated by calculating the difference between the values of the projected stresses and original EFG stresses. The ultimate goal of this study is to develop the reliable nodal generator based on the local and global errors that is estimated posteriori. To evaluate the performance of proposed adaptive procedure, the convergence behavior is investigated for several examples.

A THREE-TERM INERTIAL DERIVATIVE-FREE PROJECTION METHOD FOR CONVEX CONSTRAINED MONOTONE EQUATIONS

  • Noinakorn, Supansa;Ibrahim, Abdukarim Hassan;Abubakar, Auwal Bala;Pakkaranang, Nuttapol
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.4
    • /
    • pp.839-853
    • /
    • 2021
  • Let 𝕽n be an Euclidean space and g : 𝕽n → 𝕽n be a monotone and continuous mapping. Suppose the convex constrained nonlinear monotone equation problem x ∈ 𝕮 s.t g(x) = 0 has a solution. In this paper, we construct an inertial-type algorithm based on the three-term derivative-free projection method (TTMDY) for convex constrained monotone nonlinear equations. Under some standard assumptions, we establish its global convergence to a solution of the convex constrained nonlinear monotone equation. Furthermore, the proposed algorithm converges much faster than the existing non-inertial algorithm (TTMDY) for convex constrained monotone equations.

Effect of porosity distribution on free vibration of functionally graded sandwich plate using the P-version of the finite element method

  • Hakim Bentrar;Sidi Mohammed Chorfi;Sid Ahmed Belalia;Abdelouahed Tounsi;Mofareh Hassan Ghazwani;Ali Alnujaie
    • Structural Engineering and Mechanics
    • /
    • v.88 no.6
    • /
    • pp.551-567
    • /
    • 2023
  • In this work, the free vibration analysis of functionally graded material (FGM) sandwich plates with porosity is conducted using the p-version of the finite element method (FEM), which is based on the first-order shear deformation theory (FSDT). The sandwich plate consists of two face-sheet layers of FGM and a homogeneous core layer. The obtained results are validated using convergence and comparison studies with previously published results. Five porosities distribution models of FGM sandwich plates are assumed and analyzed. The effect of the thickness ratio, boundary conditions, volume fraction exponents, and porosity coefficients of the top and bottom layers of FGM sandwich plates on the natural frequency are addressed.

FRRmalloc : Efficient Use-After-Free prevention based on One-time-allocation and batch remapping (FRRmalloc:일회성 할당 및 리매핑 기반의 효율적인 Use-After-Free 방지)

  • Jeong-Hoon Kim;Yeong-Pil Cho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.386-388
    • /
    • 2024
  • UAF(Use-After-Free)는 heap 영역에서 메모리 오염을 발생시킬 수 있는 취약점이다. UAF를 방지하기 위해 다양한 방법으로 관련 연구가 활발히 이루어지고 있지만, 아직까지 여러 오버헤드 측면에서 모두 좋은 성능을 발휘한 결과는 나오지 않고 있다. 할당자 수준에서의 수정을 통하여, UAF 취약점 방어를 보장하는 동시에 높은 성능과 낮은 오버헤드를 발생시킬 수 있는 방법을 제시한다. 본 논문에서는 UAF 취약점 및 관련 연구를 소개하고, 이를 기반으로 UAF 취약점에 대처할 수 있는 방법을 제시한다.

Analyze trends in Use-After-Free bug detection and blocking research (Use-After-Free 버그 탐지 및 예방 연구 동향 분석)

  • Jin-Hwan Kim;Yeong-Pil Cho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.222-225
    • /
    • 2024
  • 전통적 프로그래밍 언어인 C/C++는 시스템 프로그래밍 언어로 널리 사용되고 있으며, 이는 저수준 메모리 제어와 하드웨어 상호작용 등의 특성 때문이다. 하지만 C/C++가 가지고 있는 특성중 하나인 저수준 메모리 제어는 프로그래머가 직접 메모리를 관리해야한다. 다양한 메모리 버그들중에서 특히 Use-after-free버그는 오래전부터 현재까지 해결되지 않은 버그로써 존재하고 있으며, 이는 프로그래머가 수동으로 메모리를 관리함으로써 발생한다. 이 버그를 예방 및 감지하기 위한 연구가 현재까지도 활발하게 진행되고 있다. 이 버그를 차단 및 감지하는 연구들의 동향을 분석하여 앞으로의 관련 연구의 지속적인 필요성을 제시한다.