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Abstract. Let Rn be an Euclidean space and g : Rn → Rn be a monotone and con-

tinuous mapping. Suppose the convex constrained nonlinear monotone equation problem

x ∈ C s.t g(x) = 0 has a solution. In this paper, we construct an inertial-type algorithm

based on the three-term derivative-free projection method (TTMDY) for convex constrained

monotone nonlinear equations. Under some standard assumptions, we establish its global

convergence to a solution of the convex constrained nonlinear monotone equation. Further-

more, the proposed algorithm converges much faster than the existing non-inertial algorithm

(TTMDY) for convex constrained monotone equations.
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1. Introduction

Projection method is one of the most common and efficient methods for
solving large-scale nonlinear equations. In this paper, our interest is on the
monotone nonlinear equations with convex constraints, that is

find x ∈ C s.t g(x) = 0, (1.1)

where g : Rn → Rn is assumed to be a monotone and continuous operator,
while C is a nonempty, closed and convex subset of Rn.

Chemical equilibrium systems [31], economic equilibrium problems [13], and
power flow systems [34] are only a few examples of practical problems that
can be converted into convex constraint nonlinear monotone equations (1.1).
This is why there have been keen interest in solving the problem (1.1) [35]. In
solving unconstrained optimization problem [1, 2], the three-term conjugate
gradient method is commonly used because of its descent property, computa-
tional efficiency, and stable convergence. Many researchers are now turning to
the frameworks of three-term conjugate gradient methods to solve nonlinear
equations (1.1). For example, based on the projection technique [33], Cao [12]
introduced a three-term derivative-free method for large-scale nonlinear equa-
tions, which is based on the structures of the famous Dai-Yuan (DY) conjugate
gradient method, and the three-term conjugate gradient method of Gao and
He [15]. This method inherits the stability of the DY method, and greatly
improves its computing performance. For more algorithms for solving (1.1),
see [3]-[9], [16]-[28].

In recent years, it has always been of great interest to speed up the con-
vergence of iterative algorithms. The addition of inertial terms to algorithms
is one of the most recent methods of speeding up convergence. The use of
”inertial” term can be traced back to Polyak [32], who studied the following
second-order system of differential equations:

v′′ + γv′ +∇f(v) = 0, γ > 0 (1.2)

in the context of optimization. In two-dimensional case, system (1.2) describes,
roughly, the motion of a heavy ball that rolls under its own inertial over the
graph of f until it is impeded by friction. For results concerning inertial
algorithms, see [10, 11, 29, 30].

Our interest in this paper is to introduce an inertial algorithm for find-
ing the solutions of the convex constraint nonlinear monotone equation. The
proposed method combines the inertial term with the three-term derivative-
free projection method (TTMDY) for convex constrained monotone nonlinear
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equations [12]. Our algorithm converges much faster than the existing non-
inertial algorithm (TTMDY). We give numerical examples to support this
claim. Throughout this paper, ‖ · ‖ denotes the Euclidean norm of a vector.

2. Preliminaries and algorithm

In the sequel, we first give some well-known concepts that will be used.

Definition 2.1. A mapping g : Rn → Rn is called

(a) monotone on Rn if

(g(x)− g(y))T (x− y) ≥ 0, ∀x, y ∈ Rn.

(b) L-Lipschitz continuous on Rn if there exists a constant L > 0 such
that

‖g(x)− g(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn.

To describe our algorithm, we also use the projection operator PC which is
defined as follows:

For every element x ∈ Rn, there exists a unique nearest point in C, denoted
by PC(x), such that

PC(x) = arg min
y∈C
‖x− y‖.

PC is called the orthogonal (or metric) projection of Rn onto C. The metric
projection PC has the following basic property:

‖PC(x)− y‖2 ≤ ‖x− y‖2 − ‖x− PC(x)‖2, ∀x ∈ Rn,∀y ∈ C. (2.1)

Lemma 2.2. ([28]) Let Rn be an Euclidean space. Then the following in-
equality hold:

‖x+ y‖2 ≤ ‖x‖2 + 2yT (x+ y).

Lemma 2.3. ([28]) Let {xk} and {yk} be sequences of nonnegative real num-
bers satisfying the following relation

xk+1 ≤ xk + yk,

where
∞∑
k=0

yk <∞, then lim
k→∞

xk exists.

Lemma 2.4. ([28]) A point q is in the solution set C∗ of (1.1) if and only if
q = PC(q − ρu) for some u = g(q) and ρ > 0.
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In the following, based on the TTMDY method [12], we present the inertial
TTMDY method. The specific steps of our proposed method are presented in
the algorithm below.

Algorithm A: Inertial-TTMDY method (ITTMDY)

(S.0) Take the positive constants: Tol > 0, r > 0 ρ ∈ (0, 1), ζ > 0, σ > 0,
ψk ∈ [0, 1). Select arbitrary points x−1, x0 ∈ C. Set k := 0.

(S.1) Set ck = xk + ψk(xk − xk−1).
(S.2) Compute g(ck). If ‖g(ck)‖ ≤ Tol, stop. Otherwise, generate the search

direction dk by

dk :=

{
−g(ck) if k = 0,

−g(ck) + βImDY
k dk−1 + ϑkyk−1 if k > 0,

(2.2)

where,

βImDY
k :=

‖g(ck)‖2

dTk−1wk−1
, ϑk :=

g(ck)Tdk−1
dTk−1wk−1

,

yk−1 := g(ck)− g(ck−1),

wk−1 := yk−1 + tk−1dk−1, tk−1 := r
‖g(ck−1)‖
‖dk−1‖

+ max

{
0,−

dTk−1yk−1

‖dk−1‖2

}
.

(2.3)

(S.3) Determine the step-size εk = ζρi where i is the least nonnegative
integer satisfying

−g(ck + εkdk)Tdk ≥ σεk‖dk‖2. (2.4)

(S.4) Compute vk = ck + εkdk, where vk is a trial point.

(S.5) If vk ∈ C and ‖g(vk)‖ ≤ Tol, stop. Otherwise, compute the next iterate
by

xk+1 = PC [ck − λkg(vk)] , (2.5)

where

λk :=
g(vk)T (ck − vk)

‖g(vk)‖2
.

(S.6) Set k ← k + 1, and return to (S.1).

Next, we give the assumptions that we will use throughout this paper.

Assumption 2.5. Suppose that the following conditions hold:

(a) The feasible set C is a nonempty, closed and convex subset of the Eu-
clidean space Rn.
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(b) g : Rn → Rn is monotone and L-Lipschitz continuous.
(c) The solution set C∗ of (1.1) is nonempty.

Assumption 2.6. Let {ψk} be a sequence of nonnegative real number satis-
fying the condition:

∞∑
k=0

ψk‖xk − xk−1‖ <∞.

3. Main result

In this section, we will analyze the convergence of Algorithm A. We start
with the following lemma which plays an important role in proving the con-
vergence of the proposed algorithm.

Lemma 3.1. Let dk be generated by Algorithm A. Then, dk always satisfies
the sufficient descent condition, that is,

g(ck)Tdk = −p‖g(ck)‖2, p > 0. (3.1)

Proof. The proof is the same as that in [12]. Therefore we omit it. �

Lemma 3.2. Let {xk} and {vk} be generated by Algorithm A. If q ∈ C∗, then
under Assumption 2.5 and 2.6, it holds that

‖xk+1 − q‖2 ≤ ‖ck − q‖ −
σ2‖ck − vk‖4

‖g(vk)‖2
. (3.2)

Moreover, the sequence {xk} is bounded and

∞∑
k=0

‖ck − vk‖4 <∞. (3.3)

Proof. By the monotonicity of the mapping g, we have

g(vk)T (ck − q) = g(vk)T (ck − vk) + g(vk)T (vk − q)
≥ g(vk)T (ck − vk) + g(q)T (vk − q)
= g(vk)T (ck − vk)

≥ σ‖ck − vk‖2. (3.4)
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From the nonexpansiveness of the projection operator and (3.4), it holds that
for any q ∈ C∗,

‖xk+1 − q‖2 = ‖PC(ck + λkg(vk))− q‖2

≤ ‖ck − λkg(vk)− q‖2

= ‖ck − q‖2 − 2λkg(vk)T (ck − q) + λ2k‖g(vk)‖2

≤ ‖ck − q‖2 − 2λkg(vk)T (ck − vk) + λ2k‖g(vk)‖2

≤ ‖ck − q‖2 −
g(vk)T (ck − vk)2

‖g(vk)‖2

≤ ‖ck − q‖2 −
σ2‖ck − vk‖4

‖g(vk)‖2
. (3.5)

From (3.5), we can deduce that

‖xk+1 − q‖ ≤ ‖ck − q‖
= ‖xk + ψk(xk − xk−1)− q‖
≤ ‖xk − q‖+ ψk‖xk − xk−1‖. (3.6)

Noting that
∑∞

k=0 ψk‖xk − xk−1‖ < ∞, we deduce that {xk − q} is bounded
by a positive number say M0. Thus, for all k, we have that

‖xk − xk−1‖ ≤ 2M0.

Using the above bounds and the definition of ck, we have

‖ck − q‖2 = ‖xk + ψk(xk − xk−1)− q‖2

= ‖xk − q‖2 + 2ψk(xk − xk−1)T (xk + ψk(xk − xk−1)− q)
≤ ‖xk − q‖2 + 2ψk‖xk − xk−1‖(‖xk − q‖+ ψk‖xk − xk−1‖)
≤ ‖xk − q‖2 + 2Mψk‖xk − xk−1‖+ 4M0ψk‖xk − xk−1‖
= ‖xk − q‖2 + 6M0ψk‖xk − xk−1‖. (3.7)

Combining (3.5) with (3.7), we have

‖xk+1 − q‖2 ≤ ‖xk − q‖2 + 6M0ψk‖xk − xk−1‖ − σ2‖ck − vk‖4. (3.8)

Thus, we have Thus, we have

σ2‖ck − vk‖4 ≤ ‖xk − q‖2 + 6M0ψk‖xk − xk−1‖ − ‖xk+1 − q‖2. (3.9)

Adding (3.9) for k = 0, 1, 2, · · · , we have

σ2
∞∑
k=0

‖ck − vk‖4 ≤
∞∑
k=0

(
‖xk − q‖2 + 6M0ψk‖xk − xk−1‖ − ‖xk+1 − q‖2

)
.
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Now, since

∞∑
k=0

(
‖xk − q‖2 − ‖xk+1 − q‖2

)
= ‖x0 − q‖2 <∞

and

∞ψk‖xk − xk−1‖ <∞,

it implies that

σ2
∞∑
k=0

‖ck − vk‖4 ≤
∞∑
k=0

(
‖xk − q‖2 − ‖xk+1 − q‖2 + 6M0ψk‖xk − xk−1‖

)
<∞.

Therefore,

lim
k→∞

‖ck − vk‖ = 0. (3.10)

�

Remark 3.3. By the definition of {vk} and (3.3), we have

lim
k→∞

εk‖dk‖ = 0. (3.11)

Lemma 3.4. Suppose Assumptions 2.5-2.6 hold and the sequence {xk} and
{ck} are generated by Algorithm A. Then we have

lim
k→∞

‖ck − xk+1‖ = 0.

Proof. We know that

‖xk − ck‖ = ‖xk − (xk + ψk(xk − xk−1))‖ = ψk‖xk − xk−1‖.

Therefore,

lim
k→∞

‖xk − ck‖ = 0. (3.12)

Similarly, we have

‖xk − vk‖ = ‖xk − ck + ck − vk‖ ≤ ‖xk − ck‖+ ‖ck − vk‖.

Thus, by (3.10) and (3.12), it follows that

lim
k→∞

‖xk − vk‖ = 0. (3.13)
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From the nonexpansiveness of the projection operator, we have

‖xk+1 − xk‖ = ‖PC[ck − λkg(vk)]− xk‖
≤ ‖ck − λkg(vk)− xk‖
≤ ‖ck − xk‖+ ‖λkg(vk)‖
= ‖ck − xk‖+ ‖λkg(vk)‖

= ‖ck − xk‖+

∥∥∥∥g(vk)T (ck − vk)

‖g(vk)‖2
g(vk)

∥∥∥∥
≤ ‖ck − xk‖+ ‖ck − vk‖. (3.14)

Therefore,

lim
k→∞

‖xk+1 − xk‖ = 0. (3.15)

Thus, it is easy to see that

‖xk+1 − ck‖ = ‖xk+1 − (xk + ψk(xk − xk−1))‖
≤ ‖xk+1 − xk‖+ ψk‖xk − xk−1‖.

Therefore, we gets the desired result. �

Theorem 3.5. Let {xk} be a sequence generated by Algorithm A. Then, under
Assumption 2.5 and 2.6, we have that {xk} converges to an element of C∗.

Proof. By the boundedness of {xk}, it implies that there exists a subsequence
{xkj} of {xk} such that {xkj} converges to some point q̄. Also, we have that

‖ckj − xkj‖ = θkj‖xkj − xkj−1‖ → 0, as k →∞. (3.16)

Claim: q̄ ∈ C∗. Suppose by contradiction, q̄ /∈ C∗. Then by Lemma 3.4 and
(3.16)

lim
j→∞

xkj+1 = lim
j→∞

PC

(
ckj − λkjg(vkj )

)
= q̄. (3.17)

Without loss of generality, suppose λkj → λ∗ and g(vkj )→ g(z∗). Then since
g is continuous, we have g(z∗) = g(q̄). Therefore, from (3.17)

PC (q̄ − λ∗g(z∗)) = q̄.

It then follows from Lemma 2.4 that q̄ ∈ C∗, which is a contraction. Hence,
our claim holds. Replacing q with q̄ in (3.6), it is easy to see that lim

k→∞
‖xk− q̄‖

exists by Lemma 2.3. Since q̄ is an accumulation point of {xk}, we obtain that
{xk} converges to q̄. �
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4. Numerical experiment

In this section, we evaluate the efficiency of the proposed algorithm, which
we refer to as ITTMDY on some test problems, taking into account the num-
ber of iterations (NOI), the number of function evaluations (NFE), and the
time it takes to achieve convergence (CPU TIME). We also compare ITTMDY
with its non-inertial counterpart, the TTMDY algorithm, which was proposed
in [12].

Matlab R2019b was used to code all of the algorithms. For the experiments,
we consider the following factors:

• Number of problems: Ten test problems.
• Five dimensions (DIM): 1000, 5000, 10000, 50000, 100000.
• Seven Initial points (INP):

Table 1. Initial points for the implementation of the algorithms

Starting Points

ITTMDY TTMDY

x1−1 = (0.1, 0.1, · · · , 0.1)T x10 = x1−1 x10
x2−1 = (0.2, 0.2, · · · , 0.2)T x20 = x2−1 x20
x3−1 = (0.5, 0.5, · · · , 0.5)T x30 = x3−1 x30
x4−1 = (1.2, 1.2, · · · , 1.2)T x40 = x4−1 x40
x5−1 = (1.5, 1.5, · · · , 1.5)T x50 = x5−1 x50
x6−1 = (2, 2, · · · , 2)T x60 = x6−1 x60
x7−1 = rand(n, 1) x70 = x7−1 x70

• Algorithm implementation parameters: we select ζ = 1, ρ = 0.7, r =
1.8, σ = 10−3, ψ = 0.9. As for TTMDY, the parameters are selected
as in [12].
• Stopping condition: Iterations are stopped when ‖g(ck)‖ ≤ 10−6 and/or

the number of iterations exceed 1000 without reaching a solution.

The test problems considered can be found in [17]

Problem 1: Modified exponential function:

g1(x) = ex1 − 1

gi(x) = exi + xi − 1, i = 1, 2, . . . , n− 1,

C = Rn
+.
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Problem 2: Logarithmic function:

gi(xi) = log(xi + 1)− xi
n
, i = 1, 2, . . . , n,

C = Rn
+.

Problem 3: Nonsmooth function:

gi(x) = 2xi − sin(|xi|), for i = 1, 2, . . . , n,

C =

{
x ∈ Rn

+ : x ≥ 0,
n∑

i=1

xi ≤ n

}
.

Problem 4:

gi(x) = min
(
min(|xi|, x2i ),max(|xi|, x3i )

)
i = 1, 2, . . . , n,

C = Rn
+.

Problem 5: Strictly convex function I:

gi(x) = exi − 1, i = 1, 2, . . . , n,

C = Rn
+.

Problem 6: Strictly convex function II;

gi(x) =

(
i

n

)
exi − 1, i = 1, 2, . . . , n,

C = Rn
+.

Problem 7: Tridiagonal exponential function:

g1(x) = x1 − ecos(l(x1+x2))

gi(x) = xi − ecos(l(xi−1+xi+xi+1)), i = 2, . . . , n− 1,

gn(x) = xn − ecos(l(xn−1+xn)),

l =
1

n+ 1
and C = Rn

+.

Problem 8: Nonsmooth function II:

gi(x) = xi − sin(|xi − 1|), for i = 1, 2, . . . , n,

C =

{
x ∈ Rn

+ : x ≥ −1,

n∑
i=1

xi ≤ n

}
.
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Problem 9: Trig-Exp Function:

g1(x) = 3x31 + 2x2 − 5 + sin(x1 − x2) sin(x1 + x2),

gi(x) = 3x3i + 2xi+1 − 5 + sin(xi − xi+1) sin(xi + xi+1)

+ 4xi − xi−1e(xi−1−xi) − 3,

for 1 < i < n,

gn(x) = 4xn − xn−1e(xn−1−xn) − 3,

C = Rn
+.

Problem 10: Penalty function I:

ξi =

n∑
i=1

x2i , c = 10−5,

gi(x) = 2c(xi − 1) + 4(ξi − 0.25)xi, i = 1, 2, . . . , n,

C = Rn
+.

To depict the efficiency of the ITTMDY algorithm, we plot three graphs
each corresponding to NOI, NFE and CPU TIME, respectively, with the aid
of the Dolan and Morè [14] performance profiles. From the profile curve, the
algorithm that top the curve has the best performance. From Figures 1, 2 and
3, we can notice that the inertial algorithm has lesser NOI and NFEin 85%,
less CPU time in 75% of the problems, respectively. It can also be observed
that the best performing algorithm is ITTMDY as it top all the curves. Hence,
we can say that the ITTMDY algorithm is more efficient than TTMDY based
on NOI, NFE and CPU TIME.
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Figure 1. Performance profiles for the number of iterations
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Figure 2. Performance profiles for the number of function evaluations
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Figure 3. Performance profiles for the CPU time

5. Conclusions

In this article, a new derivative-free iterative algorithm for solving nonlin-
ear monotone operator equations with convex constraints is proposed. The
proposed method combines the inertial extrapolation term with a derivative-
free method. Independent of the line search, the search direction of the new
method is descent. Under some standard assumptions, the sequence gener-
ated by the new method converges globally. Finally, the efficiency of the new
method was given through numerical experiments on some benchmark test
problems. The results revealed that the inertial algorithm is more efficient
than the existing non inertial.
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