• Title/Summary/Keyword: conventional net

Search Result 566, Processing Time 0.026 seconds

Potentiality of Using Vertical and Three-Dimensional Isolation Systems in Nuclear Structures

  • Zhou, Zhiguang;Wong, Jenna;Mahin, Stephen
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1237-1251
    • /
    • 2016
  • Although the horizontal component of an earthquake response can be significantly reduced through the use of conventional seismic isolators, the vertical component of excitation is still transmitted directly into the structure. Records from instrumented structures, and some recent tests and analyses have actually seen increases in vertical responses in base isolated structures under the combined effects of horizontal and vertical ground motions. This issue becomes a great concern to facilities such as a Nuclear Power Plants (NPP), with specialized equipment and machinery that is not only expensive, but critical to safe operation. As such, there is considerable interest worldwide in vertical and three-dimensional (3D) isolation systems. This paper examines several vertical and 3D isolation systems that have been proposed and their potential application to modern nuclear facilities. In particular, a series of case study analyses of a modern NPP model are performed to examine the benefits and challenges associated with 3D isolation compared with horizontal isolation. It was found that compared with the general horizontal isolators, isolators that have vertical frequencies of no more than 3 Hz can effectively reduce the vertical in-structure responses for the studied NPP model. Among the studied cases, the case that has a vertical isolation frequency of 3 Hz is the one that can keep the horizontal period of the isolators as the first period while having the most flexible vertical isolator properties. When the vertical frequency of isolators reduces to 1 Hz, the rocking effect is obvious and rocking restraining devices are necessary.

Radiation-induced transformation of Hafnium composition

  • Ulybkin, Alexander;Rybka, Alexander;Kovtun, Konstantin;Kutny, Vladimir;Voyevodin, Victor;Pudov, Alexey;Azhazha, Roman
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1964-1969
    • /
    • 2019
  • The safety and efficiency of nuclear reactors largely depend on the monitoring and control of nuclear radiation. Due to the unique nuclear-physical characteristics, Hf is one of the most promising materials for the manufacturing of the control rods and the emitters of neutron detectors. It is proposed to use the Compton neutron detector with the emitter made of Hf in the In-core Instrumentation System (ICIS) for monitoring the neutron field. The main advantages of such a detector in comparison the conventional β-emission sensors are the possibility of reaching of a higher cumulative radiation dose and the absence of signal delays. The response time of the detection is extremely important when a nuclear reactor is operating near its critical operational parameters. Taking Hf as an example, the general principles for calculating the chains of materials transformation under neutron irradiation are reported. The influence of 179m1Hf on the Hf composition changing dynamics and the process of transmutants' (Ta, W) generation were determined. The effect of these processes on the absorbing properties of Hf, which inevitably predetermine the lifetime of the detector and its ability to generate a signal, is estimated.

PYROPROCESSING TECHNOLOGY DEVELOPMENT AT KAERI

  • Lee, Han-Soo;Park, Geun-Il;Kang, Kweon-Ho;Hur, Jin-Mok;Kim, Jeong-Guk;Ahn, Do-Hee;Cho, Yung-Zun;Kim, Eung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.317-328
    • /
    • 2011
  • Pyroprocessing technology was developed in the beginning for metal fuel treatment in the US in the 1960s. The conventional aqueous process, such as PUREX, is not appropriate for treating metal fuel. Pyroprocessing technology has advantages over the aqueous process: less proliferation risk, treatment of spent fuel with relatively high heat and radioactivity, compact equipment, etc. The addition of an oxide reduction process to the pyroprocessing metal fuel treatment enables handling of oxide spent fuel, which draws a potential option for the management of spent fuel from the PWR. In this context, KAERI has been developing pyroprocessing technology to handle the oxide spent fuel since the 1990s. This paper describes the current status of pyroprocessing technology development at KAERI from the head-end process to the waste treatment. A unit process with various scales has been tested to produce the design data associated with the scale up. A performance test of unit processes integration will be conducted at the PRIDE facility, which will be constructed by early 2012. The PRIDE facility incorporates the unit processes all together in a cell with an Ar environment. The purpose of PRIDE is to test the processes for unit process performance, operability by remote equipment, the integrity of the unit processes, process monitoring, Ar environment system operation, and safeguards related activities. The test of PRIDE will be promising for further pyroprocessing technology development.

SEPARATE AND INTEGRAL EFFECT TESTS FOR VALIDATION OF COOLING AND OPERATIONAL PERFORMANCE OF THE APR+ PASSIVE AUXILIARY FEEDWATER SYSTEM

  • Kang, Kyoung-Ho;Kim, Seok;Bae, Byoung-Uhn;Cho, Yun-Je;Park, Yu-Sun;Yun, Byoung-Jo
    • Nuclear Engineering and Technology
    • /
    • v.44 no.6
    • /
    • pp.597-610
    • /
    • 2012
  • The passive auxiliary feedwater system (PAFS) is one of the advanced safety features adopted in the APR+, which is intended to completely replace the conventional active auxiliary feedwater system. With an aim of validating the cooling and operational performance of PAFS, an experimental program is in progress at KAERI, which is composed of two kinds of tests; the separate effect test and the integral effect test. The separate effect test, PASCAL ($\underline{P}$AF$\underline{S}$ $\underline{C}$ondensing Heat Removal $\underline{A}$ssessment $\underline{L}$oop), is being performed to experimentally investigate the condensation heat transfer and natural convection phenomena in PAFS. A single, nearly-horizontal U-tube, whose dimensions are the same as the prototypic U-tube of the APR+ PAFS, is simulated in the PASCAL test. The PASCAL experimental result showed that the present design of PAFS satisfied the heat removal requirement for cooling down the reactor core during the anticipated accident transients. The integral effect test is in progress to confirm the operational performance of PAFS, coupled with the reactor coolant systems using the ATLAS facility. As the first integral effect test, an FLB (feedwater line break) accident was simulated for the APR+. From the integral effect test result, it could be concluded that the APR+ has the capability of coping with the hypothetical FLB accident by adopting PAFS and proper set-points of its operation.

HORIZON EXPANSION OF THERMAL-HYDRAULIC ACTIVITIES INTO HTGR SAFETY ANALYSIS INCLUDING GAS-TURBINE CYCLE AND HYDROGEN PLANT

  • No, Hee-Cheon;Yoon, Ho-Joon;Kim, Seung-Jun;Lee, Byeng-Jin;Kim, Ji-Hwang;Kim, Hyeun-Min;Lim, Hong-Sik
    • Nuclear Engineering and Technology
    • /
    • v.41 no.7
    • /
    • pp.875-884
    • /
    • 2009
  • We present three nuclear/hydrogen-related R&D activities being performed at KAIST: air-ingressed LOCA analysis code development, gas turbine analysis tool development, and hydrogen-production system analysis model development. The ICE numerical technique widely used for the safety analysis of water-reactors is successfully implemented into GAMMA, with which we solve the basic equations for continuity, momentum conservation, energy conservation of the gas mixture, and mass conservation of 6 species (He, N2, O2, CO, CO2, and H2O). GAMMA has been extensively validated using data from 14 test facilities. We developed a tool to predict the characteristics of HTGR helium turbines based on the throughflow calculation with a Newton-Raphson method that overcomes the weakness of the conventional method based on the successive iteration scheme. It is found that the current method reaches stable and quick convergence even under the off-normal condition with the same degree of accuracy. The dynamic equations for the distillation column of HI process are described with 4 material components involved in the HI process: H2O, HI, I2, H2. For the HI process we improved the Neumann model based on the NRTL (Non-Random Two-Liquid) model. The improved Neumann model predicted a total pressure with 8.6% maximum relative deviation from the data and 2.5% mean relative deviation, and liquid-liquid-separation with 9.52% maximum relative deviation from the data.

Simulation of the Combined Effects of Dipole Emitter Orientation, Mie Scatterers, and Pillow Lenses on the Outcoupling Efficiency of an OLED (쌍극자 광원의 진동방향, Mie 산란자, 그리고 Pillow 렌즈가 OLED의 광추출효율에 미치는 영향에 대한 시뮬레이션 연구)

  • Lee, Ju Seob;Lee, Jong Wan;Park, Jaehoon;Ko, Jae-Hyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.4
    • /
    • pp.193-199
    • /
    • 2014
  • The net effect of the emitter orientation, Mie scatters, and pillow lenses on the outcoupling efficiency (OCE) of a bottom-emitting OLED having an internal photonic crystal layer was investigated by a combined optical simulation based on the finite-difference time-domain method (FDTD) and the ray-tracing technique. The simulation showed that when the emitter orientation was horizontal with respect to the OLED surface, the OCE could be increased by 54% when a photonic crystal layer was employed, while it could be improved by 86% under optimized conditions of Mie scatters and pillow lenses applied to the glass substrate. The peculiar intensity distribution of the OLED, caused by the periodic lattice structure of the photonic crystal layer, could be ameliorated by inserting Mie scatters into the glass substrate. This study suggests that conventional outcoupling structures combined with control of the emitter orientation could improve the OCE substantially.

Precise Measurement of Ultra Small Retardation of Rubbed Polyimide Alignment Layer Using an Improved Transmission Ellipsometer (개선된 투과형 타원계를 사용한 러빙된 Polyimide 배향막의 초미세 위상지연 정밀 측정)

  • Lyum, Kyoung Hun;Park, Sang Uk;Yang, Seong Mo;Yoon, Hee Kyu;Kim, Sang Youl
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.2
    • /
    • pp.77-85
    • /
    • 2013
  • The precision of retardation measurement has been improved upto $3{\sigma}$ <0.005 nm after improvements are made to the conventional transmission ellipsometer. Improvements are made such that, i) the polarizer module instead of the sample stage is rotated, ii) the light source is replaced, iii) the starting points of two rotating modules are accurately synchronized, and iv) the fine background retardation is compensated. Together with the newly introduced RVD (Retardation Vector Difference) method, the improved instrument is successfully applied to characterize the ultra small optical birefringence of the rubbed polyimide alignment layer, after the residual retardation due to glass substrate whose magnitude is about 1.0 nm is properly subtracted. It is verified that the net retardation of the alignment layer ranges from 0.05 nm to 0.15 nm.

Measuring Situation Awareness of Operating Team in Different Main Control Room Environments of Nuclear Power Plants

  • Lee, Seung Woo;Kim, Ar Ryum;Park, Jinkyun;Kang, Hyun Gook;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.153-163
    • /
    • 2016
  • Environments in nuclear power plants (NPPs) are changing as the design of instrumentation and control systems for NPPs is rapidly moving toward fully digital instrumentation and control, and modern computer techniques are gradually introduced into main control rooms (MCRs). Within the context of these environmental changes, the level of performance of operators in a digital MCR is a major concern. Situation awareness (SA), which is used within human factors research to explain to what extent operators of safety-critical systems know what is transpiring in the system and the environment, is considered a prerequisite factor to guarantee the safe operation of NPPs. However, the safe operation of NPPs can be guaranteed through a team effort. In this regard, the operating team's SA in a conventional and digital MCR should be measured in order to assess whether the new design features implemented in a digital MCR affect this parameter. This paper explains the team SA measurement method used in this study and the results of applying this measurement method to operating teams in different MCR environments. The paper also discusses several empirical lessons learned from the results.

Interaction of Nonsedating Antihistamines with Cerebral Muscarinic Receptors (비수기성 항 Histamine제와 대뇌 Muscarine 수용체와의 상호작용)

  • 김영열;이정수;박인숙
    • YAKHAK HOEJI
    • /
    • v.43 no.5
    • /
    • pp.642-651
    • /
    • 1999
  • Nonsedating antihistamines do net cause sedation in therapeutic doses because these drugs hardly cross the blood-brain barrier. Since most of the peripheral side dffects of conventional antihistamines are related to their muscarinic receptor blocking action, the present study was performed to investigate whether nonsedating antihistamines interact with the muscarinic receptors and discriminate the muscarinic receptor subtypes in the rat cerebral microsomal fraction which containes both $M_1,{\;}M_2,{\;}M_3{\;}and{\;}M_4$ receptors. Five nonsedating antihistamines at high concentrations inhibited [$^3H$]QNB binding to the muscarinic receptor in a dose-dependent manner. The inhibition curves of these drugs except loratadine which showed positive cooperativity (nH=1.55) were steep (nH=1), indicating interaction with a single homogenous population of the binding sites. Astemizole, clemizole and mequitazine increased the $K_D$ value for [$^3H$]QNB without affecting the binding site concentrations, and this increase in the $K_D$ value resulted from the ability of these drugs to slow [$^3H$]QNB-receptor association. The Ki values of astemizole, clemizole and mequitazine for the inhibition for the inhibition of [$^3H$]QNB binding to muscarinic receptor were 0.58, 5.99 and $0.007{\;}{\mu}M$, respectively. However, loratadine and terfenadine inhibited noncompetitively [$^3H$]QNB binding with the normalized $IC_50$ value of about $2{\;}{\mu}M$. These results demonstrate that; 1) astemizole, clemizole and mequitazine interact directly with the muscarinic receptor at high concentrations; 2) muscarinic receptor blocking potency of these drugs varies widely among drugs; 3) these drugs do not discriminate between muscarinic receptor subtypes.

  • PDF

A Trial for Improvement of Energy Efficiency of Plasma Reactor by Superposing Two Heterogeneous Discharges - Characteristics of Surface and Corona Discharge Combined Plasma Reactor - (이종방전 중첩에 의한 방전 플라스마반응기의 효율개선의 시도 - 연면.직류코로나 방전 중첩형 반응기의 특성 -)

  • ;Mizuki Yamaguma
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.66-70
    • /
    • 2000
  • In order to cope with environmental problems caused by harmful gases emitted from various industrial sources, a new technology which employs discharge plasma formed in ordinary atmospheric pressure has been intensively investigated in many industrialized nations. Although a plenty of useful outcomes and suggestions have been made public by scientists in this field, few commercial products which effectively decompose pollutant gases have appeared as yet. This is partly because that the energy efficiency of a most effective plasma reactor has not reached a satisfactory level in comparison with those of devices using conventional technologies. In an attempt to solve the problem mentioned above, we noticed to combine heterogeneous electrical discharges. This concepts is based on that each plasma reactor has its specific spatial region in which chemical reaction are active and by electrically affected with another reactor of different type, the activated region would increase - which may lead to cutting down the energy consumption. To prove this concept experimentally, two different discharge equipments, a plane ceramic-based surface discharge electrode and a corona electrode with tungsten needle may, are selected and combined to fabricate a hybrid plasma reactor. The results are summarized as follows; (1) Ozone concentration generated in the plasma region drastically increases when the positive corona discharge is added to the surface discharge. The rate of increase of ozone depends on the frequency of the surface discharge. The negative corona, however, does not contribute to the improvement of the ozone generation. (2) NO(nitrogen monoxide) decomposition rate also improves by simultaneously applying the surface and the positive corona discharges. The effect of the corona superposition is more evident when the level of the surface discharge is moderate. (3) By adjusting the corona level, the net energy efficiency during NO decomposition improves in comparison with the simple surface discharge reactor.

  • PDF