DOI QR코드

DOI QR Code

PYROPROCESSING TECHNOLOGY DEVELOPMENT AT KAERI

  • Received : 2011.07.28
  • Published : 2011.08.31

Abstract

Pyroprocessing technology was developed in the beginning for metal fuel treatment in the US in the 1960s. The conventional aqueous process, such as PUREX, is not appropriate for treating metal fuel. Pyroprocessing technology has advantages over the aqueous process: less proliferation risk, treatment of spent fuel with relatively high heat and radioactivity, compact equipment, etc. The addition of an oxide reduction process to the pyroprocessing metal fuel treatment enables handling of oxide spent fuel, which draws a potential option for the management of spent fuel from the PWR. In this context, KAERI has been developing pyroprocessing technology to handle the oxide spent fuel since the 1990s. This paper describes the current status of pyroprocessing technology development at KAERI from the head-end process to the waste treatment. A unit process with various scales has been tested to produce the design data associated with the scale up. A performance test of unit processes integration will be conducted at the PRIDE facility, which will be constructed by early 2012. The PRIDE facility incorporates the unit processes all together in a cell with an Ar environment. The purpose of PRIDE is to test the processes for unit process performance, operability by remote equipment, the integrity of the unit processes, process monitoring, Ar environment system operation, and safeguards related activities. The test of PRIDE will be promising for further pyroprocessing technology development.

Keywords

References

  1. Y. J. Shin, et al., KAERI/RR-2128, (2000)
  2. S. H. Ahn, J. H. Jin and J. S. Yoon, "Development of a Tele-operated Manipulator System for Remote Handling of Spent Fuel Bundles", KNS. Vol. 35, pp 214-225, (2003)
  3. S. H. Hong and J. W. Jeon , "A Real-Time Graphic Simulator to Monitor Spent Nuclear Fuel Dismantlement Devices", Nucl. Technol. Vol. 139, pp 263-273, (2002) https://doi.org/10.13182/NT02-A3318
  4. S.M. Jeong, J.M. Hur, S.S. Hong, D.S. Kang, M.S. Choung, C.S. Seo, J.S. Yoon, "An Electrochemical Reduction of uranium Oxide in the Advanced Spent Fuel Conditioning Process," Nucl. Technol., 162, 184, (2008)
  5. J.M. Hur, I.K. Choi, S.H. Cho, S.M. Jeong, C.S. Seo, "Preparation and Melting of Uranium from $U_{3}O_{8}$," J. Alloys Compounds, 452, 23, (2008) https://doi.org/10.1016/j.jallcom.2006.11.210
  6. S. Herrmann, S. Li, M. Simpson, "Electrolytic Reduction of Spent Fuel: Bench-Scale Experiment Results," J. Nucl. Sci. Technol., 44, 361, (2007) https://doi.org/10.3327/jnst.44.361
  7. J. M. Shin and J. J. Park, "Trapping Characteristics of Cesium in Off-Gas Stream Using Fly Ash Filter", Korean J. Chem. Eng. 18(6), 1010, (2001) https://doi.org/10.1007/BF02705634
  8. J. J. Park, et. al., "Development of Voloxidation Process for Treatment of LWR Spent Fuel", KAERI/RR-2840/2006, (2007)
  9. J. J. Park, et. al., "Development of Advanced Voloxidation Process for Treatment of Spent Fuel", KAERI/RR-3212/2009, (2010)
  10. B. R. Westphal, J. J. Park, J. M. Shin, G.I. Park, K. J. Bateman, and D. L. Walquist, "Selective Trapping of Volatile Fission Products with an Off-Gas Treatment System", Separation Science and Technology, 43, 2695, (2008) https://doi.org/10.1080/01496390802122139
  11. B. H. Park, H. H. Lee, W. M. Choung, J. M. Hur and C. S. Seo, "Advanced in the ACP Facility Electrochemical Reduction Process", Nucl. Technol., Vol. 171, pp 232-246, (2010) https://doi.org/10.13182/NT10-A10859
  12. S. D. Herrmann and S. X. Li, "Separation and Recovery of Uranium Metal from Spent Light Water Reactor Fuel Via Electrolytic Reduction and Electrorefining", Nucl. Technol., Vol. 171, pp 247-265, (2010) https://doi.org/10.13182/NT171-247
  13. J. H. Lee, Y. H. Kang, S. C. Hwang, J.-B. Shim, E. H. Kim, S. W. Park, "Application of Graphite as a Cathode Material for Electrorefining of Uranium", Nucl. Technol., Vol.162, pp 135-143, (2008)
  14. S.X. Li, "Anodic Process of Electrorefining Spent Nuclear Fuel in Molten LiCl-KCl-$UCl_3$/Cd System", Proceedings of 13th International Symposium on Molten Salts, Philadelphia, PA, May 12-17, (2002)
  15. Y.-S. Lee, C.-H. Cho, S.-H. Lee, J.-G. Kim, H.-S. Lee, "Uranium ingot casting method with Uranium deposit in a Pyroprocessing", J. Korean Radioactive Waste Soc., Vol.8, pp 85-89, (2010)
  16. T. Hijikata, T. Koyama, "Development of high temperature transport technologies for liquid cadmium in pyrometallurgical reprocess", J. Power and Energy System, Vol.3, pp 170-178, (2009) https://doi.org/10.1299/jpes.3.170
  17. Argonne National Laboratory, CMT Annual Technical Report 1987, ANL-88/19, (1988)
  18. T. Koyama, M. Iijuka, Y. Shoji, R. Fujita, H. Tanaka, T. Kobayashi, M. Tokiwai, J. Nucl. Sci. Technol. Vol. 34 (4), pp. 384-393, (1997) https://doi.org/10.3327/jnst.34.384
  19. Argonne National Laboratory, CMT Annual Technical Report 1993, ANL-94/15, (1994)
  20. J.B. Shim, Y.J. You, S.W. Kwon, S.H. Kim, S.W. Paek, K.R. Kim, J.G. Kim, H. Chung, and D.H. Ahn, "Thermodynamic and Experimental Approaches for an Effective Recovery of Actinides from a Spent LiCl-KCl Salt", Proceedings of the 2008 International Pyroprocessing Research Conference, Aug. 24-27, 2008, Jeju Island, Republic of Korea, (2008)
  21. K. Kinoshita, T. Inoue, S.P. Fusselman, D.L. Grimmett, J.J. Roy, R.L. Gay, C.L. Krueger, C.R. Nabelek, and T.S. Storvick, "Separation of Uranium and Transuranic Elements from Rare Earth Elements by Means of Multistage Extraction in LiCl-KCl/Bi System", J. Nucl. Sci. Techol., 36, 189, (1999) https://doi.org/10.3327/jnst.36.189
  22. Cassayre L, Caravaca C, Jardin R, Malmbeck R, Masset P, Mendes E, Serp J, Soucek P, Glatz JP, "On the formation of U-Al alloys in the molten LiCl-KCl eutectic", J Nucl Mater, 378, 79-85, (2008) https://doi.org/10.1016/j.jnucmat.2008.05.004
  23. Levillain E, Gaillard F, Leghie P, Demortier A, Lelieur JP, "On the understanding of the reduction of sulfur (S8) in dimethylformamide", J Electroanal Chem., 420, 167-177, (1997) https://doi.org/10.1016/S0022-0728(96)04796-1
  24. ANSYS CFX-12.0 Solver 2008 (Cannonsburg, USA/ANSYS:www.ansys.com)
  25. M. F. Simpson and M. L. D. Gougar, Two-Site Equilibrium Model for Ion Exchange between MonovalentCations and Zeolite-A in a Molten Salt, Ind. Eng. Chem. Res., 42, 4208-4212, (2003) https://doi.org/10.1021/ie020896b
  26. R. K. Ahluwalia, H. K. Geyer, C. Pereira, and J. P. Ackerman, Modeling of a Zeolite from Molten Salt, Ind. Eng. Chem. Res., 37, 145-153, (1998) https://doi.org/10.1021/ie970492x
  27. S. Phongikaroon and M. F. Simpson, Equilibrium Model for Ion Exchange Between Multivalent Cations and Zeolite-A in a Molten Salt, AIChE, 52(5), 1736-1743, (2006) https://doi.org/10.1002/aic.10784
  28. D. Lexa, Occlusion and ion exchange in the molten (lithium chloride potassium chloride alkaline earth chloride) salt zeolite 4A system with alkaline earth chlorides of calcium and strontium, and in the molten (lithium chloride potassium chloride actinide chloride) salt zeolite 4A system with the actinide chloride of uranium. Metallurgical and Materials Transactions B., 34, 201-208, (2003) https://doi.org/10.1007/s11663-003-0007-z
  29. H. S. Park, I. T. Kim, Y. J. Cho, M. S. Son, H. C. Eun, Removal behavior of Cs from molten salt by using zeolitic materials, J Radioanal Nucl Chem., 283, 267-272, (2010) https://doi.org/10.1007/s10967-009-0351-9
  30. Lee, W.E., Ojovan, M.I., Stennett, M.C., Hyatt, N.C.; Immobilization of radioactive waste in glasses, glass composite materials and ceramics, Adv. App. Ceram. 105, 1-12, (2006) https://doi.org/10.1179/174367606X81623

Cited by

  1. Corrosion Evaluation for Advanced Fuel Cycle Facilities vol.11, pp.6, 2012, https://doi.org/10.14773/cst.2012.11.6.213
  2. Simulation of radioactivation and chlorination reaction behavior for Zircaloy-4 and Zirlo cladding hull wastes vol.292, pp.3, 2012, https://doi.org/10.1007/s10967-011-1581-1
  3. Demonstration of Zr Recovery from 50 g Scale Zircaloy-4 Cladding Hulls using a Chlorination Method vol.11, pp.1, 2013, https://doi.org/10.7733/jkrws.2013.11.1.55
  4. Chlorination Reaction Behavior of Zircaloy-4 Hulls: A Preliminary Study on the Effect of the Oxidation Process on the Reaction Rate vol.11, pp.1, 2013, https://doi.org/10.7733/jkrws.2013.11.1.69
  5. Structure and Chemistry in Halide Lead–Tellurite Glasses vol.117, pp.7, 2013, https://doi.org/10.1021/jp310820t
  6. O Molten Salt vol.16, pp.3, 2013, https://doi.org/10.5229/JKES.2013.16.3.138
  7. Stabilization of Cs/Re trapping filters using magnesium phosphate ceramics vol.295, pp.1, 2013, https://doi.org/10.1007/s10967-012-1774-2
  8. Distillation of LiCl from the LiCl–Li2O molten salt of the electrolytic reduction process vol.295, pp.2, 2013, https://doi.org/10.1007/s10967-012-1997-2
  9. Effect of burn-up on the radioactivation behavior of cladding hull materials studied using the ORIGEN-S code vol.298, pp.3, 2013, https://doi.org/10.1007/s10967-013-2543-6
  10. Study on Oxidation or Reduction Behavior of Cs-Te-O System with Gas Conditions of Voloxidation Process vol.51, pp.6, 2013, https://doi.org/10.9713/kcer.2013.51.6.700
  11. A Review on the Application of Ionic Liquids for the Radioactive Waste Processing vol.12, pp.1, 2014, https://doi.org/10.7733/jnfcwt.2014.12.1.45
  12. Performance Evaluation to Develop an Engineering Scale Cathode Processor by Multiphase Numerical Analysis vol.12, pp.1, 2014, https://doi.org/10.7733/jnfcwt.2014.12.1.7
  13. Study on an Optimal Condition of Closed Chamber Distillation Equipment for Regeneration of LiCl-KCl Eutectic Salt Containing Rare Earth Phosphates vol.188, pp.2, 2014, https://doi.org/10.13182/NT13-146
  14. Computational electrochemo-fluid dynamics modeling in a uranium electrowinning cell vol.299, pp.1, 2014, https://doi.org/10.1007/s10967-013-2720-7
  15. Fabrication and physical properties of lanthanide oxide glass wasteform for the immobilization of lanthanide oxide wastes generated from pyrochemical process vol.299, pp.3, 2014, https://doi.org/10.1007/s10967-013-2863-6
  16. Electrochemical Reduction Process for Pyroprocessing vol.52, pp.3, 2014, https://doi.org/10.9713/kcer.2014.52.3.279
  17. Feasibility study of a gamma camera for monitoring nuclear materials in the PRIDE facility vol.64, pp.9, 2014, https://doi.org/10.3938/jkps.64.1293
  18. Separation Characteristics of NdCl3 from LiCl-KCl Eutectic Salt in a Reactive Distillation Process using Li2CO3 or K2CO3 vol.13, pp.3, 2015, https://doi.org/10.7733/jnfcwt.2015.13.3.181
  19. The Effects of Cross-Section Openings on the Chlorination Reaction Rate of ZIRLO Cladding Hulls vol.13, pp.3, 2015, https://doi.org/10.7733/jnfcwt.2015.13.3.211
  20. TiN Anode for Electrolytic Reduction of UO2 in Pyroprocessing vol.13, pp.3, 2015, https://doi.org/10.7733/jnfcwt.2015.13.3.229
  21. A Preliminary Study on the Feasibility of Copper Mesh as an Off-Gas Iodine Capturing Medium for Pyroprocessing vol.13, pp.3, 2015, https://doi.org/10.7733/jnfcwt.2015.13.3.235
  22. O-LiCl Molten Salt using Porous Anode Shroud vol.18, pp.3, 2015, https://doi.org/10.5229/JKES.2015.18.3.121
  23. Electrochemical behavior of liquid Sb anode system for electrolytic reduction of UO2 vol.303, pp.1, 2015, https://doi.org/10.1007/s10967-014-3621-0
  24. Evaporation of CsCl, BaCl2, and SrCl2 from the LiCl–Li2O molten salt of the electrolytic reduction process vol.303, pp.1, 2015, https://doi.org/10.1007/s10967-014-3330-8
  25. Pyrochemical extraction analysis of an immiscible molten LiCl–KCl/Cd system vol.304, pp.1, 2015, https://doi.org/10.1007/s10967-014-3824-4
  26. Dechlorination/Solidification of LiCl Waste by Using a Synthetic Inorganic Composite with Different Compositions vol.14, pp.3, 2016, https://doi.org/10.7733/jnfcwt.2016.14.3.211
  27. Fabrication of U-10 wt.%Zr Metallic Fuel Rodlets for Irradiation Test in BOR-60 Fast Reactor vol.2016, pp.1687-6083, 2016, https://doi.org/10.1155/2016/4385925
  28. Chlorination reaction kinetics of CsI under cladding hull waste treatment condition: a TGA study vol.307, pp.1, 2016, https://doi.org/10.1007/s10967-015-4096-3
  29. Purification of LiCl–KCl eutectic waste salt containing rare earth chlorides delivered from the pyrochemical process of used nuclear fuel using a reactive distillation process vol.307, pp.2, 2016, https://doi.org/10.1007/s10967-015-4231-1
  30. Introduction of MKZP (Min Ku Zirconium Process) as an alternative to pyroprocessing for used nuclear fuel management vol.308, pp.2, 2016, https://doi.org/10.1007/s10967-015-4618-z
  31. Carbon anode with repeatable use of LiCl molten salt for electrolytic reduction in pyroprocessing vol.310, pp.1, 2016, https://doi.org/10.1007/s10967-016-4786-5
  32. Electrolytic reduction rate of porous UO2 pellets vol.33, pp.7, 2016, https://doi.org/10.1007/s11814-016-0077-7
  33. Monte Carlo simulations of safeguards neutron counter for oxide reduction process feed material vol.69, pp.7, 2016, https://doi.org/10.3938/jkps.69.1175
  34. Electrochemical and Spectroscopic Monitoring of Interactions of Oxide Ion with U (III) and Ln (III) (Ln = Nd, Ce, and La) in LiCl-KCl Melts vol.164, pp.8, 2017, https://doi.org/10.1149/2.0071708jes
  35. Equipment Layout Improvement for Large-Scale Hot Cell Facility Logistics vol.2017, pp.1687-6083, 2017, https://doi.org/10.1155/2017/4585120
  36. Electrochemical properties of noble metal anodes for electrolytic reduction of uranium oxide vol.311, pp.1, 2017, https://doi.org/10.1007/s10967-016-5107-8
  37. Quantitative calculations on the reoxidation behavior of oxide reduction system for pyroprocessing vol.313, pp.1, 2017, https://doi.org/10.1007/s10967-017-5264-4
  38. Electrorefining of Zirconium from Zircaloy-4 Cladding Hulls in LiCl-KCl Molten Salts vol.159, pp.8, 2012, https://doi.org/10.1149/2.012208jes
  39. A Basic Study on Capture and Solidification of Rare Earth Nuclide (Nd) in LiCl-KCl Eutectic Salt Using an Inorganic Composite With Li2O-Al2O3-SiO2-B2O3 System vol.15, pp.1, 2017, https://doi.org/10.7733/jnfcwt.2017.15.1.83
  40. Scaling Up Fabrication of UO2 Porous Pellet With a Simulated Spent Fuel Composition vol.15, pp.4, 2017, https://doi.org/10.7733/jnfcwt.2017.15.4.343
  41. Development, characterization and dissolution behavior of calcium-aluminoborate glass wasteforms to immobilize rare-earth oxides vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-23665-z
  42. DFT study on the bonding properties of Pu(III) and Pu(IV) chloro complexes vol.55, pp.4, 2018, https://doi.org/10.1080/00223131.2017.1412365
  43. Basis for a Minimalistic Salt Treatment Approach for Pyroprocessing Commercial Nuclear Fuel vol.16, pp.1, 2018, https://doi.org/10.7733/jnfcwt.2018.16.1.1
  44. A Basic Study on Separation of U and Nd From LiCl-KCl-UCl3-NdCl3 System vol.16, pp.1, 2018, https://doi.org/10.7733/jnfcwt.2018.16.1.59
  45. Chemical behavior of grey phases in LiCl molten salt for oxide reduction in pyroprocessing pp.1588-2780, 2018, https://doi.org/10.1007/s10967-018-6179-4
  46. Investigations on Detecting Potential Nuclear Material Diversion from a Pyroprocessing Facility pp.1943-7471, 2018, https://doi.org/10.1080/00295450.2018.1500074
  47. Thermodynamic investigation on the behavior of rare earth oxides during electrolytic reduction process vol.317, pp.2, 2018, https://doi.org/10.1007/s10967-018-5975-1
  48. Ceramic plasma-spray-coated graphite crucible for injection casting of fast reactor fuel slugs vol.15, pp.4, 2018, https://doi.org/10.1111/ijac.12851
  49. Evaluation of Pt anode stability in repeated electrochemical oxide reduction reactions for pyroprocessing vol.316, pp.3, 2018, https://doi.org/10.1007/s10967-018-5765-9
  50. Electrochemical behavior of chalcogen and halogen fission products in pyro-electrochemical reduction process vol.48, pp.6, 2018, https://doi.org/10.1007/s10800-018-1153-y
  51. Uranium recovery with zinc distillation from a liquid zinc cathode for pyroprocessing vol.316, pp.2, 2018, https://doi.org/10.1007/s10967-018-5789-1
  52. Study on the phase separation behavior of (U,Nd)3O8 powder by high temperature oxidation pp.1588-2780, 2019, https://doi.org/10.1007/s10967-019-06439-3